This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338146 #8 Oct 14 2020 10:50:10 %S A338146 1,1,4,9,6,1,216,22164,613804,6901425,39713430,131754420,267165360, %T A338146 336798000,257796000,109771200,19958400,1,90052,1471369998, %U A338146 1460163153852,303126054092610,22838390261305920,831533453035309605 %N A338146 Triangle read by rows: T(n,k) is the number of oriented colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns. %C A338146 Each chiral pair is counted as two when enumerating oriented arrangements. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual. %C A338146 The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1). %H A338146 K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180. %F A338146 For n>1, A337411(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j). %F A338146 T(n,k) = A338147(n,k) + A338148(n,k) = 2*A338147(n,k) - A338149(n,k) = 2*A338148(n,k) + A338149(n,k). %F A338146 T(2,k) = A338142(2,k) = A325016(2,k) = A325008(2,k); T(3,k) = A338142(3,k). %e A338146 Triangle begins with T(1,1): %e A338146 1 %e A338146 1 4 9 6 %e A338146 1 216 22164 613804 6901425 39713430 131754420 267165360 336798000 %e A338146 ... %e A338146 For T(2,3)=9, the 3 achiral colorings are ABAC, ABCB, and ACBC. The three chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. %t A338146 m=1; (* dimension of color element, here an edge *) %t A338146 Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]]; %t A338146 FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); %t A338146 CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]), 0]); %t A338146 PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]); %t A338146 pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) %t A338146 row[m]=b; row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))] %t A338146 array[n_, k_] := row[n] /. b -> k %t A338146 Join[{{1}},Table[LinearSolve[Table[Binomial[i,j],{i,2^(m+1)Binomial[n,m+1]},{j,2^(m+1)Binomial[n,m+1]}], Table[array[n,k],{k,2^(m+1)Binomial[n,m+1]}]], {n,m+1,m+4}]] // Flatten %Y A338146 Cf. A338147 (unoriented), A338148 (chiral), A338149 (achiral), A337411 (k or fewer colors), A325008 (orthoplex vertices, orthotope facets). %Y A338146 Cf. A327087 (simplex), A338142 (orthotope edges, orthoplex ridges). %K A338146 nonn,tabf %O A338146 1,3 %A A338146 _Robert A. Russell_, Oct 12 2020