This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338154 #29 Mar 10 2024 18:22:53 %S A338154 426,4968,50640,486930,4547088,41796168,380789562,3451622904, %T A338154 31194607488,281440825122,2536622917920,22848990484344, %U A338154 205743704494026,1852238413383048,16673036119790640,150072652217086770,1350735146332489008,12157047307392618408 %N A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism. %C A338154 Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - _Ray Chandler_, Mar 10 2024 %H A338154 Peter Kagey, <a href="/A338154/b338154.txt">Table of n, a(n) for n = 3..1000</a> %H A338154 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a> %H A338154 Wikipedia, <a href="https://en.wikipedia.org/wiki/Acyclic_orientation">Acyclic orientation</a> %H A338154 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (17, -88, 153, -81). %F A338154 Conjectures from _Colin Barker_, Oct 13 2020: (Start) %F A338154 G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)). %F A338154 a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6. %F A338154 (End) %F A338154 a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - _Peter Kagey_, Nov 15 2020 %e A338154 For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426. %t A338154 A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* _Peter Kagey_, Nov 15 2020 *) %Y A338154 Cf. A077263, A124352, A124353, A192742, A284699, A284700, A284701, A287988, A294152, A297384. %Y A338154 Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism). %K A338154 nonn %O A338154 3,1 %A A338154 _Peter Kagey_, Oct 13 2020