This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338186 #10 Apr 19 2023 18:55:58 %S A338186 2,16,126,1100,9850,88584,797174,7174468,64570098,581130752, %T A338186 5230176622,47071589436,423644304746,3812798742520,34315188682470, %U A338186 308836698142004,2779530283277794,25015772549499888,225141952945498718,2026277576509488172,18236498188585393242,164128483697268538856 %N A338186 Expansion of (2-6*x-12*x^2)/((1-x)^2*(1-9*x)). %C A338186 The locally small terms 4^k in A322469 occur at the positions a(k) (for k = 0..9, and probably in general; cf. conjectures in A322469). %H A338186 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-19,9). %F A338186 a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3) for n >= 3. %e A338186 A322469(a(4)) = A322469(9850) = 256 = 4^4. %p A338186 f:= gfun:-rectoproc({a(n)=11*a(n-1)-19*a(n-2)+9*a(n-3), a(0)=2, a(1)=16, a(2)=126}, a(n), remember): map(f, [$0..21]); %t A338186 CoefficientList[Series[(2-6*x-12*x^2)/((1-x)^2*(1-9*x)), {x,0,21}], x] %o A338186 (PARI) my(x='x+O('x^22)); Vec((2-6*x-12*x^2)/((1-x)^2*(1-9*x))) %Y A338186 Cf. A322469. %K A338186 nonn,easy %O A338186 0,1 %A A338186 _Georg Fischer_, Oct 15 2020