This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338198 #12 Oct 19 2020 16:43:13 %S A338198 1,0,1,2,1,1,2,3,2,1,6,5,4,3,1,10,11,8,5,4,1,22,21,16,11,6,5,1,42,43, %T A338198 32,21,14,7,6,1,86,85,64,43,26,17,8,7,1,170,171,128,85,54,31,20,9,8,1, %U A338198 342,341,256,171,106,65,36,23,10,9,1,682,683,512,341,214,127,76,41,26,11,10,1 %N A338198 Triangle read by rows, T(n,k) = ((k+1)*2^(n-k)-(k-2)*(-1)^(n-k))/3 for 0 <= k <= n. %C A338198 This triangle is related to the Jacobsthal numbers (A001045). %F A338198 T(n,n) = 1 for n >= 0; T(n,n-1) = n-1 for n > 0. %F A338198 T(n,k) = T(n-1,k) + 2 * T(n-2,k) for 0 <= k <= n-2. %F A338198 T(n,k) = 2 * T(n-1,k) - (k-2) * (-1)^(n-k) for 0 <= k < n. %F A338198 T(n,k) = T(n+1-k,1) + (k-1) * T(n-k,1) for 0 <= k < n. %F A338198 T(n+1,k) * T(n-1,k) - T(n,k+1) * T(n,k-1) = T(n-k,1)^2 for 0 < k < n. %F A338198 Row sums are A083579(n+1) for n >= 0. %F A338198 G.f. of column k >= 0: (1+(k-1)*t) * t^k / (1-t-2*t^2). %F A338198 G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 - (1+x)*t + 2*x*t^2) / ((1 - x*t)^2 * (1 - t - 2*t^2)). %F A338198 Conjecture: Let M(n,k) be the matrix inverse of T(n,k), seen as a matrix. Then M(i,j) = 0 if j < 0 or j > i, M(n,n) = 1 for n >= 0, M(n,n-1) = 1-n for n > 0, and M(n,k) = (-1)^(n-k) * (k^2-2) * (n-2)! / k! for 0 <= k <= n-2. %e A338198 The triangle T(n,k) for 0 <= k <= n starts: %e A338198 n\k : 0 1 2 3 4 5 6 7 8 9 %e A338198 ====================================================== %e A338198 0 : 1 %e A338198 1 : 0 1 %e A338198 2 : 2 1 1 %e A338198 3 : 2 3 2 1 %e A338198 4 : 6 5 4 3 1 %e A338198 5 : 10 11 8 5 4 1 %e A338198 6 : 22 21 16 11 6 5 1 %e A338198 7 : 42 43 32 21 14 7 6 1 %e A338198 8 : 86 85 64 43 26 17 8 7 1 %e A338198 9 : 170 171 128 85 54 31 20 9 8 1 %e A338198 etc. %t A338198 Table[((k + 1)*2^(n - k) - (k - 2)*(-1)^(n - k))/3, {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Oct 15 2020 *) %Y A338198 For columns k = 0 to 8 see A078008, A001045, A000079, A001045, A084214, A014551, A083595, A083582, A259713 respectively. %K A338198 nonn,easy,tabl %O A338198 0,4 %A A338198 _Werner Schulte_, Oct 15 2020