cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2).

This page as a plain text file.
%I A338200 #31 Dec 02 2021 13:32:09
%S A338200 0,0,1,2,4,6,9,12,17,21,27,33,41,48,58,67,79,90,104,117,134,149,168,
%T A338200 186,208,228,253,276,304,330,361,390,425,457,495,531,573,612,658,701,
%U A338200 751,798,852,903,962,1017,1080,1140,1208,1272,1345,1414,1492,1566,1649
%N A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2).
%H A338200 Michael De Vlieger, <a href="/A338200/b338200.txt">Table of n, a(n) for n = 1..10000</a>
%H A338200 Saeid Azam, Masaya Tomie, and Yoji Yoshii, <a href="https://doi.org/10.18910/83200">Classification of pointed reflection spaces</a>, Osaka J. Math. (2021) Vol. 58, 563-589.
%H A338200 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,-1).
%F A338200 a(n) = (1/8)*n*(n-2) + 2*(Sum_{k=3..n/2} p(k,3)) + p((n+2)/2,3) if n is even; a(n) = 2*floor((n-1)/4)*floor((n+1)/4) + 2*(Sum_{k=3..(n-1)/2} p(k,3)) + p((n+1)/2,3) + p((n+3)/2,3) if n is odd, where p(k,3) = A069905(k) is the number of partitions of k into three parts.
%F A338200 From _Andrew Howroyd_, Oct 29 2020: (Start)
%F A338200 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 10.
%F A338200 G.f.: x^3*(1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
%F A338200 (End)
%t A338200 F[n_] := If[EvenQ[n],
%t A338200   n (n - 2)/8 +
%t A338200    2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, n/2}] +
%t A338200    Length[IntegerPartitions[(n + 2)/2, {3}]],
%t A338200   2*Floor[(n - 1)/4]*Floor[(n + 1)/4] +
%t A338200    2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, (n - 1)/2}] +
%t A338200    Length[IntegerPartitions[(n + 1)/2, {3}]] +
%t A338200    Length[IntegerPartitions[(n + 3)/2, {3}]]]
%t A338200 (* Second program: *)
%t A338200 LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1}, {0,0,1,2,4,6,9,12,17,21}, 55] (* _Jean-François Alcover_, Nov 13 2020 *)
%o A338200 (PARI) concat([0,0], Vec((1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^50))) \\ _Andrew Howroyd_, Oct 29 2020
%Y A338200 Cf. A069905.
%K A338200 nonn,easy
%O A338200 1,4
%A A338200 _Masaya Tomie_, Oct 16 2020