cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338209 a(1) = 1, a(n) is the least m not already in the sequence whose binary expansion ends with the binary expansion of the binary weight of a(n-1).

Original entry on oeis.org

1, 3, 2, 5, 6, 10, 14, 7, 11, 15, 4, 9, 18, 22, 19, 23, 12, 26, 27, 20, 30, 28, 31, 13, 35, 39, 36, 34, 38, 43, 44, 47, 21, 51, 52, 55, 29, 60, 68, 42, 59, 37, 63, 46, 76, 67, 71, 84, 75, 92, 100, 79, 45, 108, 116, 124, 53, 132, 50, 83, 140, 87, 61, 69, 91, 77
Offset: 1

Views

Author

Michael De Vlieger, Dec 16 2020

Keywords

Comments

Define binary weight wt(n) as A000120(n), the number of 1s in the binary expansion of n. Let w = A000120(a(n-1)) the binary weight of the previous term. In other words, a(n) is the least m not already in the sequence such that m mod 2^k = w, where k = floor(1 + log_2 w).
Likely a permutation of the natural numbers.
The numbers m = 2^k with 0 <= k <= 3 appear at indices {1, 3, 11, 222}. The term 16 has not appeared for n <= 2^14 and may not until n approaches 2^16.
The numbers m = (2^k + 1) appear at indices {2, 4, 12, 223, ...}. The numbers m = 2^k or (2^k + 1) require n approximately equal to 2^m in order to appear in the sequence.
The numbers m = (2^k - 1) with 1 <= k <= 14 appear at indices {1, 2, 8, 10, 23, 43, 130, 278, 447, 758, 1390, 2525, 4719, 9333}, respectively.
The plot exhibits dendritic streams of residues r (mod 2^k). We can identify coordinates (x, y) = (n, a(n)) on the plot where the streams branch.
The branches of the tree in the plot contain m congruent to r (mod 2^k), where r is a term (except the last term) in row (k-1) of A049773.
Given 2^14 terms of this sequence, we see 2 or 3 successive invocations of w, otherwise, w appears just once before a different value succeeds it in the next term.
2^4 appears at index 47201. - Michael S. Branicky, Dec 16 2020
A permutation of the integers since n appears at or before index 2^n - 1, the first number with binary weight n. - Michael S. Branicky, Dec 16 2020

Examples

			a(2) = 3 since the binary weight of 1 is 1, and 3 = 1 (mod 2^1).
a(3) = 2 since wt(3) = 2, and 2 = 2 (mod 2^2).
a(4) = 5 since wt(2) = 1, 5 = 1 (mod 2^1), etc.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, Block[{k = 1, r = DigitCount[#[[-1]], 2, 1], s}, s = IntegerLength[r, 2]; While[Nand[FreeQ[#, k], Mod[k, 2^s] == r], k++]; k]] & @@ {#, Length@ #} &, {1}, 2^7]
  • Python
    def aupto(n):
      alst, used = [1], {1}
      for i in range(2, n+1):
        binprev = bin(alst[-1])[2:]
        binwt = binprev.count("1")
        pow2 = 2**(len(bin(binwt))-2)
        while binwt in used: binwt += pow2
        alst.append(binwt); used.add(binwt)
      return alst    # use alst[n-1] for a(n)
    print(aupto(66)) # Michael S. Branicky, Dec 16 2020