This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338215 #20 Feb 26 2024 19:37:56 %S A338215 1,1,1,3,3,5,5,6,8,9,9,11,11,12,13,14,14,16,16,17,19,20,20,21,22,24, %T A338215 25,27,27,28,28,29,30,32,33,34,34,35,36,37,37,39,39,40,42,43,43,44,45, %U A338215 46,47,49,49,50,51,52,54,55,55,57,57,58,59,60,62,63,63,64 %N A338215 a(n) = A095117(A062298(n)). %C A338215 It can be shown that there is at least one prime number between n-pi(n) and n for n >= 3, or pi(n-1)-pi(n-pi(n)) >= 1. Since a(n)=n-pi(n)+pi(n-pi(n)) <= n-pi(n-1)+pi(n-pi(n)) <= n-1, we have a(n) < n for n > 1. %C A338215 a(n)-a(n-1) = 1 - (pi(n)-pi(n-1)) + pi(n-pi(n)) - pi(n-(1+pi(n-1))), where pi(n)-pi(n-1) <= 1 and 1+pi(n-1) >= pi(n) or pi(n-(1+pi(n-1))) <= pi(n-pi(n)). Thus, a(n) - a(n-1) >= 0, meaning that this is a nondecreasing sequence. %H A338215 Michael De Vlieger, <a href="/A338215/b338215.txt">Table of n, a(n) for n = 1..10000</a> %F A338215 a(n) = A095117(A062298(n)); %F A338215 a(n) = n - pi(n) + pi(n - pi(n)), where pi(n) is the prime count of n. %t A338215 Array[PrimePi[#] + # &[# - PrimePi[#]] &, 68] (* _Michael De Vlieger_, Nov 04 2020 *) %o A338215 (Python) %o A338215 from sympy import primepi %o A338215 for n in range(1, 10001): %o A338215 b = n - primepi(n) %o A338215 a = b + primepi(b) %o A338215 print(a) %Y A338215 Cf. A000720, A062298, A095117, A337978. %K A338215 nonn %O A338215 1,4 %A A338215 _Ya-Ping Lu_, Oct 17 2020