A338158 Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,3,n).
20, 30, 12, 1, 175, 450, 425, 180, 33, 2, 980, 3308, 4458, 3065, 1140, 225, 22, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 14112, 63522, 120848, 126518, 79506, 30681, 7132, 933, 58, 1, 41580, 204180, 429030, 503664, 361690, 163380, 45885, 7588, 648, 20
Offset: 1
Examples
Triangle begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 n=1: 20 30 12 1 n=2: 175 450 425 180 33 2 n=3: 980 3308 4458 3065 1140 225 22 1 n=4: 4116 16468 27293 24262 12521 3796 653 58 2 n=5: 14112 63522 120848 126518 79506 30681 7132 933 58 1 n=6: 41580 204180 429030 503664 361690 163380 45885 7588 648 20 ... Row n=4 corresponds to the polynomial 4116 + 16468*x + 27293*x^2 + 24262*x^3 + 12521*x^4 + 3796*x^5 + 653*x^6 + 58*x^7 + 2*x^8.
Links
- C.-P. Chou, ZZDecomposer.
- C.-P. Chou, Y. Li and H. A. Witek, Zhang-Zhang Polynomials of Various Classes of Benzenoid Systems, MATCH Commun. Math. Comput. Chem. 68 (2012), 31-64.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- C.-P. Chou and H. A. Witek, Determination of Zhang-Zhang Polynomials for various Classes of Benzenoid Systems: Non-Heuristic Approach, MATCH Commun. Math. Comput. Chem. 72 (2014), 75-104.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,3,n)).
- H. A. Witek, J. Langner, G. Mos, and C.-P. Chou, Zhang-Zhang Polynomials of Regular 5-tier Benzeonid Strips, MATCH Commun. Math. Comput. Chem. 78 (2017), 487-504.
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996), 147-167 (ZZ polynomial is defined by Eq.(2.1) and working formula is given by Eq.(2.2)).
Crossrefs
Programs
-
Maple
(n,k)->add(binomial(i+k,k)*(binomial(9,i+k)*binomial(n,i+k)+(10*binomial(7,i+k-2)-binomial(6,i+k-2))*binomial(n+1,i+k)+(20*binomial(5,i+k-4)+binomial(3,i+k-3)-binomial(3,i+k-5))*binomial(n+2,i+k)+(10*binomial(3,i+k-6)+binomial(2,i+k-5)+binomial(3,i+k-5))*binomial(n+3,i+k)+binomial(2,i+k-7)*binomial(n+4,i+k)),i = 0..9)
Formula
T(n,k) = Sum_{l=0..9} C(k+l,k) * (C(9,k+l)*C(n,k+l) + (10*C(7,k+l-2) - C(6,k+l-2)) * C(n+1,k+l) + (20*C(5,k+l-4) + C(3,k+l-3) - C(3,k+l-5)) * C(n+2,k+l) + (10*C(3,k+l-6) + C(2,k+l-5) + C(3,k+l-5)) * C(n+3,k+l) + C(2,k+l-7) * C(n+4,k+l)) where C(n,k) = binomial(n,k). This formula can be obtained by a double sum rotation from Eq.(13) of Witek, Langner, Mos and Chou. Eq.(13) was first discovered heuristically as Eq.(37) of Chou, Li and Witek; a formal proof was given in Eqs.(66-71) on pp. 100-102 of Chou and Witek.
Comments