This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338226 #41 Aug 23 2025 21:52:05 %S A338226 0,9,198,3087,41976,530865,6419754,75308643,864197532,9753086421, %T A338226 108641975310,1197530864199,13086419753088,141975308641977, %U A338226 1530864197530866,16419753086419755,175308641975308644,1864197530864197533,19753086419753086422,208641975308641975311,2197530864197530864200 %N A338226 a(n) = Sum_{i=0..n-1} i*10^i - Sum_{i=0..n-1} (n-1-i)*10^i. %C A338226 Note that adding a constant k does not change the result: a(n) = (Sum_{i=0..n-1} (k+i) * 10^i) - (Sum_{i=0..n-1} (k+n-1-i) * 10^i). This means any set of consecutive numbers may be used to generate the terms. %C A338226 a(n) = A019566(n) for n <= 9. This is an alternate generalization of A019566 beyond n=9. %C A338226 For two numbers A = Sum_{i=0..n-1} (x_i) * b^i and A' = Sum_{i=0..n-1} (x'_i) * b^i, A-A' is divisible by b-1 if Sum_{i=0..n-1} (x_i) = Sum_{i=0..n-1} (x'_i). x_i and x'_i are sets of integers. This is because b^i == 1 (mod b-1). In this specific case b=10, hence all terms are divisible by 9 and are given by a(n) = 9*A272525(n-1). %H A338226 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (22,-141,220,-100). %F A338226 a(n) = A052245(n) - A014824(n). %F A338226 a(n+1) - a(n) = A033713(n+1). %F A338226 a(n) = ((9*n - 11)*10^n + (9*n + 11))/81. - _Andrew Howroyd_, Oct 26 2020 %F A338226 From _Colin Barker_, Oct 26 2020: (Start) %F A338226 G.f.: 9*x^2 / ((1 - x)^2*(1 - 10*x)^2). %F A338226 a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4. %F A338226 (End) %F A338226 E.g.f.: exp(x)*(11 + 9*x + exp(9*x)*(90*x - 11))/81. - _Stefano Spezia_, Oct 27 2020 %t A338226 LinearRecurrence[{22, -141, 220, -100}, {0, 9, 198, 3087}, 21] (* _Amiram Eldar_, Oct 26 2020 *) %o A338226 (PARI) concat(0, Vec(9*x^2 / ((1 - x)^2*(1 - 10*x)^2) + O(x^20))) \\ _Colin Barker_, Oct 27 2020 %Y A338226 Cf. A033713 (first differences), A019566 ("unique" numbers). %K A338226 nonn,base,easy,changed %O A338226 1,2 %A A338226 _Abhinav S. Sharma_, Oct 17 2020