cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338244 Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).

Original entry on oeis.org

35, 60, 30, 4, 490, 1470, 1695, 940, 255, 30, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 24696, 118590, 243994, 281372, 199822, 90482, 26195, 4748, 517, 32, 10, 116424, 635362, 1513660, 2068248, 1791158, 1025836, 393659, 100450, 16583, 1678, 930, 21
Offset: 1

Views

Author

Henryk A. Witek, Oct 18 2020

Keywords

Comments

The maximum k for which T(n,k) is nonzero, denoted by Cl(n), is usually referred to as the Clar number of O(3,4,n); one has: Cl(1)=3, Cl(2)=6, Cl(3)=8, Cl(4)=10, Cl(5)=11, and Cl(n)=12 for n>5.
T(n,k) denotes the number of Clar covers of order k in the hexagonal graphene flake O(3,4,n).
The Kekulé number of O(3,4,n) is given by T(n, 0).
ZZ polynomials of hexagonal graphene flakes O(3,4,n) can be computed using ZZDecomposer (see link below), a graphical program to compute ZZ polynomials of benzenoids, or using ZZCalculator (see link below).

Examples

			Triangle begins:
        k=0    k=1     k=2     k=3     k=4     k=5    k=6    k=7   k=8  k=9 k=10
n=1:     35     60      30       4
n=2:    490   1470    1695     940     255      30      1
n=3:   4116  16468   27293   24262   12521    3796    653     58     2
n=4:  24696 118590  243994  281372  199822   90482  26195   4748   517   32  1
n=5: 116424 635362 1513660 2068248 1791158 1025836 393659 100450 16583 1678 93 2
   ...
Row n=4 corresponds to the polynomial 24696 + 118590*x + 243994*x^2 + 281372*x^3 + 199822*x^4 + 90482*x^5 + 26195*x^6 + 4748*x^7 + 517*x^8 + 32*x^9 + x^10.
		

Crossrefs

Column k=0 is A107915.

Programs

  • Maple
    (n,k)->add(binomial(k+i,k)*(binomial(n,k+i)*binomial(12,k+i)+18*binomial(n+1,k+i)*binomial(10,k+i-2)+84*binomial(n+2,k+i)*binomial(8,k+i-4)+126*binomial(n+3,k+i)*binomial(6,k+i-6)+57*binomial(n+4,k+i)*binomial(4,k+i-8)+4*binomial(n+5,k+i)*binomial(2,k+i-10)+add(4*binomial(n+1+h,k+i)*binomial(9,k+i-3)+24*binomial(n+2+h,k+i)*binomial(7,k+i-5)+36*binomial(n+3+h,k+i)*binomial(5,k+i-7)+14*binomial(n+4+h,k+i)*binomial(3,k+i-9),h = 0 .. 1)+add(add(binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k+i)*binomial(6-2*s,k+i-6-2*s),s = 0 .. 2),h = 0 .. 2)),i = 0 .. 12).

Formula

T(n,k) = Sum_{i=0..12} binomial(k+i,k)*(binomial(n,k+i)*binomial(12,k+i) + 18*binomial(n+1,k+i)*binomial(10,k+i-2) + 84*binomial(n+2,k+i)*binomial(8,k+i-4) + 126*binomial(n+3,k+i)*binomial(6,k+i-6) + 57*binomial(n+4,k+i)*binomial(4,k+i-8) + 4*binomial(n+5,k+i)*binomial(2,k+i-10) + Sum_{h=0..1} (4*binomial(n+1+h,k+i)*binomial(9,k+i-3) + 24*binomial(n+2+h,k+i)*binomial(7,k+i-5) + 36*binomial(n+3+h,k+i)*binomial(5,k+i-7) + 14*binomial(n+4+h,k+i)*binomial(3,k+i-9)) + Sum_{s=0..2} Sum_{h=0..2} binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k+i)*binomial(6-2*s,k+i-6-2*s)) (conjectured, explicitly confirmed for n=1..1000).