A338244 Triangle read by rows: T(n,k) is the coefficient of x^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).
35, 60, 30, 4, 490, 1470, 1695, 940, 255, 30, 1, 4116, 16468, 27293, 24262, 12521, 3796, 653, 58, 2, 24696, 118590, 243994, 281372, 199822, 90482, 26195, 4748, 517, 32, 10, 116424, 635362, 1513660, 2068248, 1791158, 1025836, 393659, 100450, 16583, 1678, 930, 21
Offset: 1
Examples
Triangle begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 n=1: 35 60 30 4 n=2: 490 1470 1695 940 255 30 1 n=3: 4116 16468 27293 24262 12521 3796 653 58 2 n=4: 24696 118590 243994 281372 199822 90482 26195 4748 517 32 1 n=5: 116424 635362 1513660 2068248 1791158 1025836 393659 100450 16583 1678 93 2 ... Row n=4 corresponds to the polynomial 24696 + 118590*x + 243994*x^2 + 281372*x^3 + 199822*x^4 + 90482*x^5 + 26195*x^6 + 4748*x^7 + 517*x^8 + 32*x^9 + x^10.
Links
- C.-P. Chou, ZZDecomposer executable.
- C.-P. Chou, ZZCalculator source code.
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH Commun. Math. Comput. Chem. 68 (2012), 3-30.
- C.-P. Chou and H. A. Witek, ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures, MATCH Commun. Math. Comput. Chem. 71 (2014), 741-764.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 105 for a graphical definition of O(3,4,n)).
- H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996), 147-167 (ZZ polynomial is defined by Eq.(2.1) and working formula is given by Eq.(2.2)).
Crossrefs
Column k=0 is A107915.
Programs
-
Maple
(n,k)->add(binomial(k+i,k)*(binomial(n,k+i)*binomial(12,k+i)+18*binomial(n+1,k+i)*binomial(10,k+i-2)+84*binomial(n+2,k+i)*binomial(8,k+i-4)+126*binomial(n+3,k+i)*binomial(6,k+i-6)+57*binomial(n+4,k+i)*binomial(4,k+i-8)+4*binomial(n+5,k+i)*binomial(2,k+i-10)+add(4*binomial(n+1+h,k+i)*binomial(9,k+i-3)+24*binomial(n+2+h,k+i)*binomial(7,k+i-5)+36*binomial(n+3+h,k+i)*binomial(5,k+i-7)+14*binomial(n+4+h,k+i)*binomial(3,k+i-9),h = 0 .. 1)+add(add(binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k+i)*binomial(6-2*s,k+i-6-2*s),s = 0 .. 2),h = 0 .. 2)),i = 0 .. 12).
Formula
T(n,k) = Sum_{i=0..12} binomial(k+i,k)*(binomial(n,k+i)*binomial(12,k+i) + 18*binomial(n+1,k+i)*binomial(10,k+i-2) + 84*binomial(n+2,k+i)*binomial(8,k+i-4) + 126*binomial(n+3,k+i)*binomial(6,k+i-6) + 57*binomial(n+4,k+i)*binomial(4,k+i-8) + 4*binomial(n+5,k+i)*binomial(2,k+i-10) + Sum_{h=0..1} (4*binomial(n+1+h,k+i)*binomial(9,k+i-3) + 24*binomial(n+2+h,k+i)*binomial(7,k+i-5) + 36*binomial(n+3+h,k+i)*binomial(5,k+i-7) + 14*binomial(n+4+h,k+i)*binomial(3,k+i-9)) + Sum_{s=0..2} Sum_{h=0..2} binomial(2,s)*binomial(2,h)*binomial(n+2+s+h,k+i)*binomial(6-2*s,k+i-6-2*s)) (conjectured, explicitly confirmed for n=1..1000).
Comments