cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338263 Number of ways to write 8*n+7 as 2*w^2 + x^2 + y^2 + z^2 with w, x, y, z nonnegative integers such that w*(3*x+7*y+10*z) is a square and also one of w, x, y, z is a square.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 2, 1, 6, 3, 7, 3, 2, 7, 3, 6, 4, 5, 3, 3, 1, 1, 3, 6, 4, 5, 9, 1, 6, 4, 7, 2, 4, 4, 6, 3, 1, 6, 3, 5, 5, 4, 1, 3, 4, 4, 6, 7, 4, 3, 5, 3, 9, 3, 6, 3, 1, 10, 7, 2, 8, 3, 2, 10, 6, 5, 3, 4, 5, 4, 5, 5, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Oct 27 2020

Keywords

Comments

Conjecture 1: Each nonnegative integer can be written as 2*w^2 + x^2 + y^2 + z^2 with w, x, y, z nonnegative integers such that w*(3*x+7*y+10*z) is a square and one of w, x, y, z is also a square.
As all the nonnegative integers not of the form 4^k*(8*m+7) (k>=0, m>=0) can be written as 2*0^2 + x^2 + y^2 + z^2 with x, y, z integers, Conjecture 1 has the following equivalent version: a(n) > 0 for all n = 0,1,...
We have verified that a(n) > 0 for all n = 0..10^5.
Conjecture 2: If (a,b) is among the ordered pairs (1,2), (1,3), (2,4), (2,5), (2,8), (2,24), (6,8), (6,32), (9,12) and (18,24), then each n = 0,1,... can be written as 2*w^2 + x^2 + y^2 + z^2 with w, x, y, z nonnegative integers such that w*(a*x+b*y) is a square.

Examples

			a(7) = 1, and 8*7+7 = 63 = 2*3^2 + 6^2 + 0^2 + 3^2 with 0 = 0^2 and 3*(3*6+7*0+10*3) = 12^2.
a(11) = 1, and 8*11+7 = 95 = 2*1^2 + 2^2 + 5^2 + 8^2 with 1 = 1^2 and 1*(3*2+7*5+10*8) = 11^2.
a(15) = 1, and 8*15+7 = 127 = 2*7^2 + 3^2 + 2^2 + 4^2 with 4 = 2^2 and 7*(3*3+7*2+10*4) = 21^2.
a(64) = 1, and 8*64+7 = 519 = 2*3^2 + 1^2 + 20^2 + 10^2 with 1 = 1^2 and 3*(3*1+7*20+10*10) = 27^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[8n+7-2w^2-x^2-y^2]&&(SQ[w]||SQ[x]||SQ[y]||SQ[8n+7-2w^2-x^2-y^2])&&SQ[w(3x+7y+10*Sqrt[8n+7-2w^2-x^2-y^2])],r=r+1],{w,0,Sqrt[4n+3]},{x,0,Sqrt[8n+7-2w^2]},{y,0,Sqrt[8n+7-2w^2-x^2]}];tab=Append[tab,r],{n,0,80}];tab