A338263 Number of ways to write 8*n+7 as 2*w^2 + x^2 + y^2 + z^2 with w, x, y, z nonnegative integers such that w*(3*x+7*y+10*z) is a square and also one of w, x, y, z is a square.
1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 2, 1, 6, 3, 7, 3, 2, 7, 3, 6, 4, 5, 3, 3, 1, 1, 3, 6, 4, 5, 9, 1, 6, 4, 7, 2, 4, 4, 6, 3, 1, 6, 3, 5, 5, 4, 1, 3, 4, 4, 6, 7, 4, 3, 5, 3, 9, 3, 6, 3, 1, 10, 7, 2, 8, 3, 2, 10, 6, 5, 3, 4, 5, 4, 5, 5, 4
Offset: 0
Keywords
Examples
a(7) = 1, and 8*7+7 = 63 = 2*3^2 + 6^2 + 0^2 + 3^2 with 0 = 0^2 and 3*(3*6+7*0+10*3) = 12^2. a(11) = 1, and 8*11+7 = 95 = 2*1^2 + 2^2 + 5^2 + 8^2 with 1 = 1^2 and 1*(3*2+7*5+10*8) = 11^2. a(15) = 1, and 8*15+7 = 127 = 2*7^2 + 3^2 + 2^2 + 4^2 with 4 = 2^2 and 7*(3*3+7*2+10*4) = 21^2. a(64) = 1, and 8*64+7 = 519 = 2*3^2 + 1^2 + 20^2 + 10^2 with 1 = 1^2 and 3*(3*1+7*20+10*10) = 27^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..6000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[8n+7-2w^2-x^2-y^2]&&(SQ[w]||SQ[x]||SQ[y]||SQ[8n+7-2w^2-x^2-y^2])&&SQ[w(3x+7y+10*Sqrt[8n+7-2w^2-x^2-y^2])],r=r+1],{w,0,Sqrt[4n+3]},{x,0,Sqrt[8n+7-2w^2]},{y,0,Sqrt[8n+7-2w^2-x^2]}];tab=Append[tab,r],{n,0,80}];tab
Comments