cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338287 Decimal expansion of the sum of reciprocals of the numbers that are not pandigital numbers (version 2, A171102).

Original entry on oeis.org

6, 5, 7, 4, 3, 3, 1, 1, 1, 0, 1, 8, 5, 3, 2, 8, 1, 9, 6, 7, 3, 4, 5, 8, 3, 1, 6, 7, 6, 8, 0, 8, 6, 8, 4, 1, 1, 6, 8, 5, 3, 4, 4, 1, 0, 6, 6, 3, 5, 3, 9, 8, 1, 6, 1, 0, 5, 0, 4, 3, 9, 2, 6, 3, 4, 6, 1, 3, 8, 7, 3, 8, 7, 3, 7, 1, 8, 5, 2, 6, 8, 0, 3, 4, 7, 8, 2
Offset: 2

Views

Author

Amiram Eldar, Oct 20 2020

Keywords

Comments

The sum of the reciprocals of the terms of the complement of A171102: numbers with at most 9 distinct digits. It is the union of the 10 sequences of numbers without a single given digit (see the Crossrefs section).
The terms in the data section were taken from the 200 decimal digits given by Strich and Müller (2020).

Examples

			65.74331110185328196734583167680868411685344106635398...
		

Crossrefs

Cf. A052382 (numbers without the digit 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).

Formula

Equals 1/1 + 1/2 + 1/3 + ... + 1/1023456788 + 1/1023456790 + ..., i.e., A171102(1) = 1023456789 is the first number whose reciprocal is not in the sum.