cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338291 Matrix inverse of the rascal triangle (A077028), read across rows.

This page as a plain text file.
%I A338291 #22 Apr 07 2025 13:46:28
%S A338291 1,-1,1,1,-2,1,-1,3,-3,1,2,-6,7,-4,1,-6,18,-21,13,-5,1,24,-72,84,-52,
%T A338291 21,-6,1,-120,360,-420,260,-105,31,-7,1,720,-2160,2520,-1560,630,-186,
%U A338291 43,-8,1,-5040,15120,-17640,10920,-4410,1302,-301,57,-9,1
%N A338291 Matrix inverse of the rascal triangle (A077028), read across rows.
%C A338291 The columns of this triangle are related to factorial numbers (A000142).
%C A338291 There is a family of triangles T(m;n,k) = 1 + m*k*(n-k) for some fixed integer m (for m >= 0 see A296180, Comments) and 0 <= k <= n. They satisfy the equation T(-m;n,k) = 2 - T(m;n,k). The corresponding matrices inverse M = T^(-1) are given by: M(m;n,n) = 1 for n >= 0, and M(m;n,n-1) = m*(1-n) - 1 for n > 0, and M(m;n,k) = (-1)^(n-k) * m * (m * k*(k+1) + 1) * Product_{i=k+1..n-2} (m*(i+1) - 1) for 0 <= k <= n-2. For special cases of the M(m;n,k) see A338817 (m=-1), and A167374 (m=0), and this triangle (m=1).
%H A338291 Werner Schulte, <a href="/A338291/a338291.pdf">Proof of the Generalized Formula</a>
%F A338291 T(n,n) = 1 for n >= 0, and T(n,n-1) = -n for n > 0, and T(n,n-2) = n^2 - 3*n + 3 for n > 1, and T(n,k) = (-1)^(n-k) * (k^2 + k + 1) * (n-2)! / k! for 0 <= k <= n-2.
%F A338291 T(n,k) = (2-n) * T(n-1,k) for 0 <= k < n-2.
%F A338291 T(n,k) = T(k+2,k) * (-1)^(n-k) * (n-2)! / k! for 0 <= k <= n-2.
%F A338291 Row sums are A000007(n) for n >= 0.
%e A338291 The triangle T(n,k) for 0 <= k <= n starts:
%e A338291 n\k :      0      1       2      3      4     5     6   7   8  9
%e A338291 ================================================================
%e A338291   0 :      1
%e A338291   1 :     -1      1
%e A338291   2 :      1     -2       1
%e A338291   3 :     -1      3      -3      1
%e A338291   4 :      2     -6       7     -4      1
%e A338291   5 :     -6     18     -21     13     -5     1
%e A338291   6 :     24    -72      84    -52     21    -6     1
%e A338291   7 :   -120    360    -420    260   -105    31    -7   1
%e A338291   8 :    720  -2160    2520  -1560    630  -186    43  -8   1
%e A338291   9 :  -5040  15120  -17640  10920  -4410  1302  -301  57  -9  1
%e A338291 etc.
%o A338291 (PARI) for(n=0,10,for(k=0,n,if(k==n,print(" 1"),if(k==n-1,print1(-n,", "),print1((-1)^(n-k)*(k^2+k+1)*(n-2)!/k!,", ")))))
%o A338291 (PARI) 1/matrix(10, 10, n, k, n--; k--; if (n>=k, k*(n-k) + 1)) \\ _Michel Marcus_, Nov 11 2020
%Y A338291 Cf. A000007, A000142, A077028.
%K A338291 sign,easy,tabl
%O A338291 0,5
%A A338291 _Werner Schulte_, Oct 20 2020