A338303 Decimal expansion of Sum_{k>=0} 1/(L(2*k) + 2), where L(k) is the k-th Lucas number (A000032).
6, 4, 4, 5, 2, 1, 7, 8, 3, 0, 6, 7, 2, 7, 4, 4, 4, 2, 0, 9, 9, 2, 7, 3, 1, 1, 9, 0, 3, 8, 0, 1, 6, 9, 0, 2, 9, 2, 8, 9, 0, 8, 1, 2, 3, 8, 7, 7, 9, 9, 1, 8, 5, 7, 6, 5, 1, 4, 2, 5, 5, 2, 7, 5, 7, 7, 6, 8, 6, 8, 6, 1, 6, 8, 3, 6, 7, 8, 7, 4, 3, 3, 4, 1, 4, 0, 8
Offset: 0
Examples
0.64452178306727444209927311903801690292890812387799...
References
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 99.
Links
- Gert Almkvist, A solution to a tantalizing problem, The Fibonacci Quarterly, Vol. 24, No. 4 (1986), pp. 316-322.
- Richard Andre-Jeannin, Summation of certain reciprocal series related to Fibonacci and Lucas numbers, The Fibonacci Quarterly, Vol. 29, No. 3 (1991), pp. 200-204.
- Robert P. Backstrom, On reciprocal series related to Fibonacci numbers with subscripts in arithmetic progression, The Fibonacci Quarterly, Vol. 19, No. 1 (1981), pp. 14-21. See section 6, pp. 19-20.
- Daniel Duverney and Iekata Shiokawa, On series involving Fibonacci and Lucas numbers I, AIP Conference Proceedings, Vol. 976, No. 1 (2008), pp. 62-76, alternative link.
Programs
-
Mathematica
With[{lg = Log[GoldenRatio], kmax = 3}, sum[m_, k_] := (-1)^k*k^m*Exp[-Pi^2*k^2/lg]; RealDigits[1/8 + ( 1/(4*lg))*(1 - (4*Pi^2/lg)*(Sum[sum[2, k], {k, 1, kmax}]/(1 + 2*Sum[sum[0, k], {k, 1, kmax}]))), 10, 100][[1]]]
Formula
Equals Sum_{k>=0} 1/A240926(k).
Equals 1/4 + Sum_{k>=1} q^(2*k)/(1 + q^(2*k))^2, where q = 1/phi.
Equals 1/8 + (1/(4*log(phi))) * (1 - (4*Pi^2/log(phi)) * (S(2)/(1 + 2*S(0)))), where S(m) = Sum_{k>=1} (-1)^k * k^m * exp(-Pi^2*k^2/log(phi)) (Almkvist, 1986).
Comments