A338304 Decimal expansion of Sum_{k>=0} 1/L(2^k), where L(k) is the k-th Lucas number (A000032).
1, 4, 9, 7, 9, 2, 0, 3, 8, 0, 9, 9, 9, 0, 6, 2, 7, 1, 9, 8, 7, 0, 6, 8, 5, 5, 5, 3, 9, 9, 2, 8, 5, 9, 6, 0, 8, 0, 7, 2, 0, 7, 7, 1, 9, 8, 5, 7, 0, 8, 5, 9, 7, 0, 4, 0, 4, 9, 3, 2, 2, 3, 9, 8, 9, 5, 4, 0, 5, 2, 7, 7, 6, 9, 5, 3, 2, 2, 3, 7, 8, 3, 9, 9, 3, 2, 1
Offset: 1
Examples
1.49792038099906271987068555399285960807207719857085...
Links
- Richard André-Jeannin, A note on the irrationality of certain Lucas infinite series, The Fibonacci Quarterly, Vol. 29, No. 2 (1991), pp. 132-136.
- Catalin Badea, The irrationality of certain infinite series, Glasgow Mathematical Journal, Vol. 29, No. 2 (1987), pp. 221-228.
- Peter Bundschuh and Attila Pethö, Zur transzendenz gewisser Reihen, Monatshefte für Mathematik, Vol. 104, No. 3 (1987), pp. 199-223, alternative link.
- Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980, pp. 64-65.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Sum[1/LucasL[2^n], {n, 0, 10}], 10, 100][[1]]
Formula
Equals 1 + Sum_{k>=0} 1/A001566(k).
Comments