cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338304 Decimal expansion of Sum_{k>=0} 1/L(2^k), where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

1, 4, 9, 7, 9, 2, 0, 3, 8, 0, 9, 9, 9, 0, 6, 2, 7, 1, 9, 8, 7, 0, 6, 8, 5, 5, 5, 3, 9, 9, 2, 8, 5, 9, 6, 0, 8, 0, 7, 2, 0, 7, 7, 1, 9, 8, 5, 7, 0, 8, 5, 9, 7, 0, 4, 0, 4, 9, 3, 2, 2, 3, 9, 8, 9, 5, 4, 0, 5, 2, 7, 7, 6, 9, 5, 3, 2, 2, 3, 7, 8, 3, 9, 9, 3, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2020

Keywords

Comments

Erdős and Graham (1980) asked whether this constant is irrational or transcendental.
Badea (1987) proved that it is irrational, and André-Jeannin (1991) proved that it is not a quadratic irrational in Q(sqrt(5)), in contrast to the corresponding sum with Fibonacci numbers, Sum_{k>=0} 1/F(2^k) = (7-sqrt(5))/2 (A079585).
Bundschuh and Pethö (1987) proved that it is transcendental.

Examples

			1.49792038099906271987068555399285960807207719857085...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/LucasL[2^n], {n, 0, 10}], 10, 100][[1]]

Formula

Equals 1 + Sum_{k>=0} 1/A001566(k).