cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338310 Even composites m such that A086902(m)==7 (mod m).

This page as a plain text file.
%I A338310 #21 Oct 24 2020 17:25:23
%S A338310 4,8,22,88,472,5588,10408,20648,34568,123076,1783976,3677228,4609418,
%T A338310 4857688,6027208,9906578,16508152,19995308,20226572,32039062,56484004,
%U A338310 88835528,97896692,135858088,354671468,1091638108,2260976428,3495804596,3723523516,5577624308
%N A338310 Even composites m such that A086902(m)==7 (mod m).
%C A338310 If p is a prime, then A086902(p)==7 (mod p).
%C A338310 This sequence contains the even composite integers for which the congruence holds.
%C A338310 The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
%C A338310 For a=7, b=-1, V(m) recovers A086902(m).
%D A338310 D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
%D A338310 D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
%t A338310 Select[Range[2, 25000, 2], CompositeQ[#] && Divisible[LucasL[#, 7] - 7, #] &]
%Y A338310 Cf. A338079 (sequence of odd terms); A335668 (a=2).
%K A338310 nonn
%O A338310 1,1
%A A338310 _Ovidiu Bagdasar_, Oct 22 2020
%E A338310 a(9)-a(15) from _Amiram Eldar_, Oct 22 2020
%E A338310 a(16)-a(30) from _Daniel Suteu_, Oct 22 2020