This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338315 #14 Mar 11 2021 03:22:19 %S A338315 0,0,0,0,0,1,0,3,2,4,4,10,6,15,13,16,21,31,29,43,41,50,63,79,81,99, %T A338315 113,129,145,179,197,228,249,284,328,363,418,472,522,581,655,741,828, %U A338315 921,1008,1123,1259,1407,1546,1709,1889,2077,2292,2554,2799,3061,3369 %N A338315 Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1). %C A338315 The Heinz numbers of these partitions are given by A337987. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A338315 The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11): %e A338315 32 . 43 53 54 73 65 75 76 %e A338315 52 332 72 433 74 543 85 %e A338315 322 522 532 83 552 94 %e A338315 3222 3322 92 732 A3 %e A338315 443 5322 B2 %e A338315 533 33222 544 %e A338315 722 553 %e A338315 3332 733 %e A338315 5222 922 %e A338315 32222 4333 %e A338315 5332 %e A338315 7222 %e A338315 33322 %e A338315 52222 %e A338315 322222 %t A338315 Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}] %Y A338315 A200976 is a pairwise non-coprime instead of pairwise coprime version. %Y A338315 A304709 allows 1's, with strict case A305713 and Heinz numbers A304711. %Y A338315 A318717 counts pairwise non-coprime strict partitions. %Y A338315 A337485 is the strict version, with Heinz numbers A337984. %Y A338315 A337987 gives the Heinz numbers of these partitions. %Y A338315 A338317 considers singletons coprime, with Heinz numbers A338316. %Y A338315 A007359 counts singleton or pairwise coprime partitions with no 1's. %Y A338315 A327516 counts pairwise coprime partitions, ranked by A302696. %Y A338315 A328673 counts partitions with no two distinct parts relatively prime. %Y A338315 A337462 counts pairwise coprime compositions, ranked by A333227. %Y A338315 A337561 counts pairwise coprime strict compositions. %Y A338315 A337665 counts compositions whose distinct parts are pairwise coprime. %Y A338315 A337667 counts pairwise non-coprime compositions, ranked by A337666. %Y A338315 A337697 counts pairwise coprime compositions with no 1's. %Y A338315 Cf. A051424, A101268, A220377, A302568, A328867, A333228, A337563. %K A338315 nonn %O A338315 0,8 %A A338315 _Gus Wiseman_, Oct 23 2020