This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338316 #11 Nov 01 2020 01:47:17 %S A338316 1,3,5,7,9,11,13,15,17,19,23,25,27,29,31,33,35,37,41,43,45,47,49,51, %T A338316 53,55,59,61,67,69,71,73,75,77,79,81,83,85,89,93,95,97,99,101,103,107, %U A338316 109,113,119,121,123,125,127,131,135,137,139,141,143,145,149,151 %N A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime. %C A338316 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A338316 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. a(n) gives the n-th Heinz number of an integer partition with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime (A338317). %e A338316 The sequence of terms together with their prime indices begins: %e A338316 1: {} 33: {2,5} 71: {20} %e A338316 3: {2} 35: {3,4} 73: {21} %e A338316 5: {3} 37: {12} 75: {2,3,3} %e A338316 7: {4} 41: {13} 77: {4,5} %e A338316 9: {2,2} 43: {14} 79: {22} %e A338316 11: {5} 45: {2,2,3} 81: {2,2,2,2} %e A338316 13: {6} 47: {15} 83: {23} %e A338316 15: {2,3} 49: {4,4} 85: {3,7} %e A338316 17: {7} 51: {2,7} 89: {24} %e A338316 19: {8} 53: {16} 93: {2,11} %e A338316 23: {9} 55: {3,5} 95: {3,8} %e A338316 25: {3,3} 59: {17} 97: {25} %e A338316 27: {2,2,2} 61: {18} 99: {2,2,5} %e A338316 29: {10} 67: {19} 101: {26} %e A338316 31: {11} 69: {2,9} 103: {27} %t A338316 Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&] %Y A338316 A338315 does not consider singletons coprime, with Heinz numbers A337987. %Y A338316 A338317 counts the partitions with these Heinz numbers. %Y A338316 A337694 is a pairwise non-coprime instead of pairwise coprime version. %Y A338316 A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers A302568. %Y A338316 A101268 counts pairwise coprime or singleton compositions, ranked by A335235. %Y A338316 A302797 lists squarefree numbers whose distinct parts are pairwise coprime. %Y A338316 A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers A304711. %Y A338316 A327516 counts pairwise coprime partitions, ranked by A302696. %Y A338316 A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers A337984. %Y A338316 A337561 counts pairwise coprime strict compositions. %Y A338316 A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228. %Y A338316 A337697 counts pairwise coprime compositions with no 1's. %Y A338316 Cf. A051424, A056239, A112798, A220377, A289509, A302569, A303282, A318719, A328673, A328867. %K A338316 nonn %O A338316 1,2 %A A338316 _Gus Wiseman_, Oct 24 2020