This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338317 #12 Nov 05 2020 22:54:55 %S A338317 1,0,1,1,2,2,3,4,5,6,7,11,11,16,16,19,25,32,34,44,46,53,66,80,88,101, %T A338317 116,132,150,180,204,229,254,287,331,366,426,473,525,584,662,742,835, %U A338317 922,1013,1128,1262,1408,1555,1711,1894,2080,2297,2555,2806,3064,3376 %N A338317 Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime. %F A338317 The Heinz numbers of these partitions are given by A338316. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A338317 The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12): %e A338317 2 3 4 5 6 7 8 9 A B C %e A338317 22 32 33 43 44 54 55 65 66 %e A338317 222 52 53 72 73 74 75 %e A338317 322 332 333 433 83 444 %e A338317 2222 522 532 92 543 %e A338317 3222 3322 443 552 %e A338317 22222 533 732 %e A338317 722 3333 %e A338317 3332 5322 %e A338317 5222 33222 %e A338317 32222 222222 %t A338317 Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}] %Y A338317 A007359 (A302568) gives the strict case. %Y A338317 A101268 (A335235) gives pairwise coprime or singleton compositions. %Y A338317 A200976 (A338318) gives the pairwise non-coprime instead of coprime version. %Y A338317 A304709 (A304711) gives partitions whose distinct parts are pairwise coprime, with strict case A305713 (A302797). %Y A338317 A304712 (A338331) allows 1's, with strict version A007360 (A302798). %Y A338317 A327516 (A302696) gives pairwise coprime partitions. %Y A338317 A328673 (A328867) gives partitions with no distinct relatively prime parts. %Y A338317 A338315 (A337987) does not consider singletons coprime. %Y A338317 A338317 (A338316) gives these partitions. %Y A338317 A337462 (A333227) gives pairwise coprime compositions. %Y A338317 A337485 (A337984) gives pairwise coprime integer partitions with no 1's. %Y A338317 A337665 (A333228) gives compositions with pairwise coprime distinct parts. %Y A338317 A337667 (A337666) gives pairwise non-coprime compositions. %Y A338317 A337697 (A022340 /\ A333227) = pairwise coprime compositions with no 1's. %Y A338317 A337983 (A337696) gives pairwise non-coprime strict compositions, with unordered version A318717 (A318719). %Y A338317 Cf. A051424, A289508, A302569, A303140, A337694. %K A338317 nonn %O A338317 0,5 %A A338317 _Gus Wiseman_, Oct 24 2020