A338318 Composite numbers whose prime indices are pairwise intersecting (non-coprime).
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 9: {2,2} 121: {5,5} 243: {2,2,2,2,2} 21: {2,4} 125: {3,3,3} 247: {6,8} 25: {3,3} 129: {2,14} 259: {4,12} 27: {2,2,2} 133: {4,8} 261: {2,2,10} 39: {2,6} 147: {2,4,4} 267: {2,24} 49: {4,4} 159: {2,16} 273: {2,4,6} 57: {2,8} 169: {6,6} 289: {7,7} 63: {2,2,4} 171: {2,2,8} 299: {6,9} 65: {3,6} 183: {2,18} 301: {4,14} 81: {2,2,2,2} 185: {3,12} 303: {2,26} 87: {2,10} 189: {2,2,2,4} 305: {3,18} 91: {4,6} 203: {4,10} 319: {5,10} 111: {2,12} 213: {2,20} 321: {2,28} 115: {3,9} 235: {3,15} 325: {3,3,6} 117: {2,2,6} 237: {2,22} 333: {2,2,12}
Crossrefs
A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A337694 includes the primes.
A002808 lists composite numbers.
A318717 counts pairwise intersecting strict partitions.
Programs
-
Mathematica
stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]
Comments