cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338322 a(n) is the number of regular hexagons with all six vertices (x,y,z) in the set {1,2,...,n}^3.

This page as a plain text file.
%I A338322 #26 Apr 21 2023 09:05:05
%S A338322 0,0,0,4,32,116,320,728,1472,2796,5056,8584,13792,21136,31168,45464,
%T A338322 64704,90036,122784,164472,216864,281584,360416,457400,574304,714644,
%U A338322 881312,1077612,1306720,1575088,1884928,2245336,2658592,3130028,3665376,4277376,4967424
%N A338322 a(n) is the number of regular hexagons with all six vertices (x,y,z) in the set {1,2,...,n}^3.
%H A338322 Peter Kagey, <a href="/A338322/b338322.txt">Table of n, a(n) for n = 0..100</a>
%H A338322 Code Golf Stack Exchange, <a href="https://codegolf.stackexchange.com/q/213988/53884">Polygons in a cube</a>
%H A338322 Burkard Polster, <a href="https://youtu.be/sDfzCIWpS7Q?t=799">What does this prove? Some of the most gorgeous visual "shrink" proofs ever invented</a>, Mathologer video (2020).
%F A338322 a(n) >= 4*(n-2)^3 for n >= 2.
%e A338322 The a(3) = 4 hexagons with integer coordinates in {1,2,3} have vertices:
%e A338322   (1,1,2), (1,2,3), (2,1,1), (2,3,3), (3,2,1), (3,3,2);
%e A338322   (1,1,2), (1,2,1), (2,1,3), (2,3,1), (3,2,3), (3,3,2);
%e A338322   (1,2,1), (1,3,2), (2,1,1), (2,3,3), (3,1,2), (3,2,3); and
%e A338322   (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
%e A338322 One of the a(5) = 116 hexagons has vertices:
%e A338322   (2,2,1), (1,4,2), (2,5,4), (4,4,5), (5,2,4), (4,1,2).
%Y A338322 Cf. A102698 (equilateral triangles), A334881 (squares), A338323 (regular polygons).
%K A338322 nonn
%O A338322 0,4
%A A338322 _Peter Kagey_, Oct 22 2020