A338324 Primes p such that there exist k and m with p < k < q < m < r such that p + k, q + k, q + m and r + m are all primes, where q and r are the next two primes after p.
23, 29, 47, 199, 523, 709, 797, 809, 991, 1063, 1163, 1753, 1789, 1801, 2161, 2393, 2477, 2549, 2693, 2917, 3469, 3491, 4363, 4423, 4691, 5039, 5051, 5081, 5743, 6269, 6607, 7069, 7351, 7607, 7883, 8513, 9103, 9137, 9391, 9601, 9859, 10193, 10343, 10357, 11003, 11119, 11321, 11789, 11941, 13049
Offset: 1
Keywords
Examples
a(3) = 47 is in the sequence because 47 is prime, the next two primes are 53 and 59, and with k - 50 and m = 54, all of 47+50=97, 53+50=103, 53+54=107 and 59+54=113 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A336300.
Programs
-
Maple
R:= NULL: count:= 0: thisp:= false: q:= 2: r:= 3: while count < 100 do lastp:= thisp; thisp:= false; p:= q; q:= r; r:= nextprime(r); for k from (q+1)/2 to (r-1)/2 do if isprime(q+2*k) and isprime(r+2*k) then thisp:= true; break fi od; if thisp and lastp then R:= R, p; count:= count+1 fi; od: R;
Comments