A338326 The number of biquadratefree powerful numbers (A338325) between the consecutive squares n^2 and (n+1)^2.
0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1
Offset: 1
Keywords
Examples
a(2) = 1 since there is one biquadratefree powerful number, 8 = 2^3, between 2^2 = 4 and 3^2 = 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Massoud H. Dehkordi, Asymptotic formulae for some arithmetic functions in number theory, Ph.D. thesis, Loughborough University, 1998.
Programs
-
Mathematica
bqfpowQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], MemberQ[{2, 3 }, #] &]; a[n_] := Count[Range[n^2 + 1, (n + 1)^2 - 1], _?bqfpowQ]; Array[a, 100]
Comments