This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338330 #10 Nov 20 2020 17:16:52 %S A338330 21,39,42,57,63,65,78,84,87,91,105,111,114,115,117,126,129,130,133, %T A338330 147,156,159,168,171,174,182,183,185,189,195,203,210,213,222,228,230, %U A338330 231,234,235,237,247,252,258,259,260,261,266,267,273,285,294,299,301 %N A338330 Numbers that are neither a power of a prime (A000961) nor is their set of distinct prime indices pairwise coprime. %C A338330 Also Heinz numbers of partitions that are neither constant (A144300) nor have pairwise coprime distinct parts (A304709), hence the formula. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A338330 Equals A024619 \ A304711. %e A338330 The sequence of terms together with their prime indices begins: %e A338330 21: {2,4} 126: {1,2,2,4} 203: {4,10} %e A338330 39: {2,6} 129: {2,14} 210: {1,2,3,4} %e A338330 42: {1,2,4} 130: {1,3,6} 213: {2,20} %e A338330 57: {2,8} 133: {4,8} 222: {1,2,12} %e A338330 63: {2,2,4} 147: {2,4,4} 228: {1,1,2,8} %e A338330 65: {3,6} 156: {1,1,2,6} 230: {1,3,9} %e A338330 78: {1,2,6} 159: {2,16} 231: {2,4,5} %e A338330 84: {1,1,2,4} 168: {1,1,1,2,4} 234: {1,2,2,6} %e A338330 87: {2,10} 171: {2,2,8} 235: {3,15} %e A338330 91: {4,6} 174: {1,2,10} 237: {2,22} %e A338330 105: {2,3,4} 182: {1,4,6} 247: {6,8} %e A338330 111: {2,12} 183: {2,18} 252: {1,1,2,2,4} %e A338330 114: {1,2,8} 185: {3,12} 258: {1,2,14} %e A338330 115: {3,9} 189: {2,2,2,4} 259: {4,12} %e A338330 117: {2,2,6} 195: {2,3,6} 260: {1,1,3,6} %t A338330 Select[Range[2,100],!PrimePowerQ[#]&&!CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&] %Y A338330 A338331 is the complement. %Y A338330 A304713 is the complement of the version for divisibility. %Y A338330 Cf. A056239, A112798, A289509, A303282, A316476, A318716, A318719, A328867. %K A338330 nonn %O A338330 1,1 %A A338330 _Gus Wiseman_, Nov 12 2020