This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338331 #11 Nov 05 2020 22:55:54 %S A338331 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27, %T A338331 28,29,30,31,32,33,34,35,36,37,38,40,41,43,44,45,46,47,48,49,50,51,52, %U A338331 53,54,55,56,58,59,60,61,62,64,66,67,68,69,70,71,72,73 %N A338331 Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime. %C A338331 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A338331 Also Heinz numbers of partitions whose set of distinct parts is a singleton or pairwise coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A338331 Equals A304711 \/ A000961. %e A338331 The sequence of terms together with their prime indices begins: %e A338331 1: {} 16: {1,1,1,1} 32: {1,1,1,1,1} %e A338331 2: {1} 17: {7} 33: {2,5} %e A338331 3: {2} 18: {1,2,2} 34: {1,7} %e A338331 4: {1,1} 19: {8} 35: {3,4} %e A338331 5: {3} 20: {1,1,3} 36: {1,1,2,2} %e A338331 6: {1,2} 22: {1,5} 37: {12} %e A338331 7: {4} 23: {9} 38: {1,8} %e A338331 8: {1,1,1} 24: {1,1,1,2} 40: {1,1,1,3} %e A338331 9: {2,2} 25: {3,3} 41: {13} %e A338331 10: {1,3} 26: {1,6} 43: {14} %e A338331 11: {5} 27: {2,2,2} 44: {1,1,5} %e A338331 12: {1,1,2} 28: {1,1,4} 45: {2,2,3} %e A338331 13: {6} 29: {10} 46: {1,9} %e A338331 14: {1,4} 30: {1,2,3} 47: {15} %e A338331 15: {2,3} 31: {11} 48: {1,1,1,1,2} %t A338331 Select[Range[100],#==1||PrimePowerQ[#]||CoprimeQ@@PrimePi/@First/@FactorInteger[#]&] %Y A338331 A302798 is the squarefree case. %Y A338331 A304709 counts partitions with pairwise coprime distinct parts, with ordered version A337665 and Heinz numbers A304711. %Y A338331 A304711 does not consider singletons relatively prime, except for (1). %Y A338331 A304712 counts the partitions with these Heinz numbers. %Y A338331 A316476 is the version for indivisibility instead of relative primality. %Y A338331 A328867 is the pairwise non-coprime instead of pairwise coprime version. %Y A338331 A337600 counts triples of this type, with ordered version A337602. %Y A338331 A338330 is the complement. %Y A338331 A000961 lists powers of primes. %Y A338331 A051424 counts pairwise coprime or singleton partitions. %Y A338331 A304038 gives the distinct prime indices of each positive integer. %Y A338331 A327516 counts pairwise coprime partitions. %Y A338331 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A338331 Cf. A000837, A047968, A056239, A112798, A289509, A302797, A305148, A318716, A318719, A337664, A337695. %K A338331 nonn %O A338331 1,2 %A A338331 _Gus Wiseman_, Oct 31 2020