This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338332 #5 Nov 05 2020 22:56:08 %S A338332 0,0,0,0,0,0,0,1,1,2,2,5,3,8,6,9,9,16,10,21,15,22,20,33,21,38,30,41, %T A338332 35,56,34,65,49,64,56,79,55,96,72,93,77,120,76,133,99,122,110,161,105, %U A338332 172,126,167,143,208,136,213,165,212,182,261,163,280,210,257 %N A338332 Number of relatively prime 3-part integer partitions of n with no 1's. %C A338332 The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime). %e A338332 The a(7) = 1 through a(17) = 16 triples (A = 10, B = 11, C = 12, D = 13): %e A338332 322 332 432 433 443 543 544 554 654 655 665 %e A338332 522 532 533 552 553 653 744 754 755 %e A338332 542 732 643 743 753 763 764 %e A338332 632 652 752 762 772 773 %e A338332 722 733 833 843 853 854 %e A338332 742 932 852 943 863 %e A338332 832 942 952 872 %e A338332 922 A32 A33 944 %e A338332 B22 B32 953 %e A338332 962 %e A338332 A43 %e A338332 A52 %e A338332 B33 %e A338332 B42 %e A338332 C32 %e A338332 D22 %t A338332 Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}] %Y A338332 A001399(n-6) does not require relative primality. %Y A338332 A005408 /\ A014612 /\ A289509 gives the Heinz numbers of these partitions. %Y A338332 A055684 is the 2-part version. %Y A338332 A284825 counts the case that is also pairwise non-coprime. %Y A338332 A302698 counts these partitions of any length. %Y A338332 A337563 is the pairwise coprime instead of relatively prime version. %Y A338332 A338333 is the strict version. %Y A338332 A000837 counts relatively prime partitions, with strict case A078374. %Y A338332 A008284 counts partitions by sum and length. %Y A338332 Cf. A000010, A000741, A023022, A078374, A082024, A101271, A307719, A337450, A337599, A337600, A337601. %K A338332 nonn %O A338332 0,10 %A A338332 _Gus Wiseman_, Oct 30 2020