This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338333 #6 Nov 05 2020 22:56:20 %S A338333 0,0,0,0,0,0,0,0,0,1,1,2,2,4,4,7,6,10,8,14,12,18,16,24,18,30,25,34,30, %T A338333 44,31,52,42,56,49,69,50,80,64,83,70,102,71,114,90,112,100,140,98,153, %U A338333 117,153,132,184,128,195,154,196,169,234,156,252,196,241 %N A338333 Number of relatively prime 3-part strict integer partitions of n with no 1's. %C A338333 The Heinz numbers of these partitions are the intersection of A005117 (strict), A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime). %e A338333 The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14): %e A338333 432 532 542 543 643 653 654 754 764 765 865 %e A338333 632 732 652 743 753 763 854 873 874 %e A338333 742 752 762 853 863 954 964 %e A338333 832 932 843 943 872 972 973 %e A338333 852 952 953 A53 982 %e A338333 942 B32 962 B43 A54 %e A338333 A32 A43 B52 A63 %e A338333 A52 D32 A72 %e A338333 B42 B53 %e A338333 C32 B62 %e A338333 C43 %e A338333 C52 %e A338333 D42 %e A338333 E32 %t A338333 Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}] %Y A338333 A001399(n-9) does not require relative primality. %Y A338333 A005117 /\ A005408 /\ A014612 /\ A289509 gives the Heinz numbers. %Y A338333 A055684 is the 2-part version. %Y A338333 A284825 counts the case that is also pairwise non-coprime. %Y A338333 A337452 counts these partitions of any length. %Y A338333 A337563 is the pairwise coprime instead of relatively prime version. %Y A338333 A337605 is the pairwise non-coprime instead of relative prime version. %Y A338333 A338332 is the not necessarily strict version. %Y A338333 A338333*6 is the ordered version. %Y A338333 A000837 counts relatively prime partitions. %Y A338333 A008284 counts partitions by sum and length. %Y A338333 A078374 counts relatively prime strict partitions. %Y A338333 A101271 counts 3-part relatively prime strict partitions. %Y A338333 A220377 counts 3-part pairwise coprime strict partitions. %Y A338333 A337601 counts 3-part partitions whose distinct parts are pairwise coprime. %Y A338333 Cf. A000010, A000217, A000741, A023022, A082024, A302698, A307719, A337450, A337599, A338468. %K A338333 nonn %O A338333 0,12 %A A338333 _Gus Wiseman_, Oct 30 2020