cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338369 Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.

This page as a plain text file.
%I A338369 #61 Nov 27 2020 23:47:09
%S A338369 1,1,1,1,3,1,1,6,7,1,1,10,17,13,1,1,15,31,34,21,1,1,21,49,64,57,31,1,
%T A338369 1,28,71,103,109,86,43,1,1,36,97,151,177,166,121,57,1,1,45,127,208,
%U A338369 261,271,235,162,73,1,1,55,161,274,361,401,385,316,209,91,1,1,66,199,349,477,556,571,519,409,262,111,1
%N A338369 Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.
%C A338369 Seen as a square array: (1) A(n,k) = T(n+k,k) = (k^2*n^2+k*(k+2)*n+2)/2 for n,k >= 0; (2) A(n,k) = A(n-1,k) + k*(1 + k*n) for k >= 0 and n > 0; (3) A(n,k) = A(n,k-1) + k*n*(n+1) - n*(n-1)/2 for n >= 0 and k > 0; (4) G.f. of row n >= 0: (2 + (n^2+3*n-4)*x + (n^2-n+2)*x^2) / (2*(1-x)^3).
%F A338369 T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
%F A338369 T(n,0) = T(n,n) = 1 for n >= 0.
%F A338369 T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
%F A338369 T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
%F A338369 G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
%F A338369 E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - _Stefano Spezia_, Nov 27 2020
%e A338369 The triangle T(n,k) for 0 <= k <= n starts:
%e A338369 n \k :  0   1    2    3    4    5    6    7    8    9   10   11   12
%e A338369 ====================================================================
%e A338369    0 :  1
%e A338369    1 :  1   1
%e A338369    2 :  1   3    1
%e A338369    3 :  1   6    7    1
%e A338369    4 :  1  10   17   13    1
%e A338369    5 :  1  15   31   34   21    1
%e A338369    6 :  1  21   49   64   57   31    1
%e A338369    7 :  1  28   71  103  109   86   43    1
%e A338369    8 :  1  36   97  151  177  166  121   57    1
%e A338369    9 :  1  45  127  208  261  271  235  162   73    1
%e A338369   10 :  1  55  161  274  361  401  385  316  209   91    1
%e A338369   11 :  1  66  199  349  477  556  571  519  409  262  111    1
%e A338369   12 :  1  78  241  433  609  736  793  771  673  514  321  133    1
%e A338369 etc.
%t A338369 T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Nov 26 2020 *)
%o A338369 (PARI) for(n=0,12,for(k=0,n,print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2,", "));print(" "))
%Y A338369 Cf. A000012 (column 0, main diagonal), A000217 (column 1), A056220 (column 2), A081271 (column 3), A118057 (column 4), A002061 (1st subdiagonal), A056109 (2nd subdiagonal), A085473 (3rd subdiagonal), A272039 (4th subdiagonal).
%K A338369 nonn,easy,tabl
%O A338369 0,5
%A A338369 _Werner Schulte_, Nov 26 2020