This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338383 #22 Mar 31 2023 08:14:39 %S A338383 18,27,24,32,56,64,90,135,126,189,120,160,198,297,168,192,224,234,351, %T A338383 306,459,342,513,264,352,280,320,414,621,312,416,400,500,522,783,408, %U A338383 544,558,837,456,608,666,999,450,675,360,432,552,736,738,1107,774,1161,616,704 %N A338383 Table read by rows, in which the n-th row lists all the preimages k, in increasing order, such that k*tau(k) = A338382(n). %C A338383 The map k -> k*tau(k) = m is not injective (A038040) and this sequence lists, in increasing order of m, the preimages of the integers m that have more than one preimage. %D A338383 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103. %D A338383 D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127. %e A338383 The table begins: %e A338383 18, 27; %e A338383 24, 32; %e A338383 56, 64; %e A338383 90, 135; %e A338383 126, 189; %e A338383 120, 160; %e A338383 198, 297; %e A338383 168, 192, 224; %e A338383 ... %e A338383 1st row is (18, 27) because 18 * tau(18) = 27 * tau(27) = 108 = A338382(1). %e A338383 2nd row is (24, 32) because 24 * tau(24) = 32 * tau(32) = 192 = A338382(2). %e A338383 8th row is (168, 192, 224), because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688 = A338382(8); it is the first row with 3 preimages. %o A338383 (PARI) upto(n) = {m = Map(); res = List(); n = n\2; w = []; for(i = 1, n, c = i*numdiv(i); if(mapisdefined(m, c), listput(res, c); l = mapget(m, c); listput(l, i); mapput(m, c, l) , mapput(m, c, List(i)); ) ); listsort(res, 1); v = select(x -> x <= 2*(n+1), res); for(i = 1, #v, w = concat(w, Vec(mapget(m, v[i]))) ); w; } \\ _Michel Marcus_, Oct 27 2020 %Y A338383 Cf. A000005, A038040, A327166, A338381, A338382, A338384, A338385. %Y A338383 Cf. A337874 (similar for k*sigma(k)). %K A338383 nonn,tabf %O A338383 1,1 %A A338383 _Bernard Schott_, Oct 26 2020