This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338395 #15 Sep 08 2022 08:46:25 %S A338395 1,6,30,66,84,102,120,210,270,318,330,420,462,510,546,570,642,672,690, %T A338395 714,840,870,924,930,966,1080,1092,1122,1320,1410,1428,1518,1590,1638, %U A338395 1722,1770,1890,1932,2040,2130,2226,2280,2310,2346,2370,2604,2670,2730,2760 %N A338395 Numbers m such that lcm(tau(m), sigma(m), pod(m)) = pod(m). %C A338395 Numbers m such that A336723(m)= lcm(A000005(m), A000203(m), A007955(m)) = A007955(m). %C A338395 Numbers m such that both values tau(m) and sigma(m) divide pod(m). %C A338395 Numbers m such that all values m, tau(m) and sigma(m) divide pod(m); i.e. lcm(m, tau(m), sigma(m), pod(m)) = pod(m). %C A338395 Supersequence of A277521. %H A338395 Vaclav Kotesovec, <a href="/A338395/b338395.txt">Table of n, a(n) for n = 1..12916</a> (a(n) < 10^7) %H A338395 Vaclav Kotesovec, <a href="/A338395/a338395.jpg">Plot of a(n)/n^(3/2) for n = 1..12916</a> %e A338395 lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36 = pod(6). %t A338395 Select[Range[3000], LCM @@ {(d = DivisorSigma[0, #]), DivisorSigma[1, #], (pod = #^(d/2))} == pod &] (* _Amiram Eldar_, Oct 24 2020 *) %o A338395 (Magma) [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq &*Divisors(m)] %o A338395 (PARI) isok(m) = my(d=divisors(m), prd=vecprod(d)); lcm([#d, vecsum(d), prd]) == prd; \\ _Michel Marcus_, Oct 24 2020 %Y A338395 Cf. A000005 (tau), A000203 (sigma), A007955 (pod). %Y A338395 Cf. A277521, A336723. %K A338395 nonn %O A338395 1,2 %A A338395 _Jaroslav Krizek_, Oct 23 2020