This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338399 #13 May 09 2024 12:06:12 %S A338399 0,1,-1,2,-7,15,-78,293,-1629,8992,-58105,404669,-3097456,25617669, %T A338399 -228373197,2180640110,-22212371403,240392198791,-2754699284494, %U A338399 33320193986081,-424246016043385,5671750867032228,-79436475109286061,1163129092965592997 %N A338399 Inverse boustrophedon transform of the Fibonacci numbers. %H A338399 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BoustrophedonTransform.html">Boustrophedon Transform</a> %H A338399 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a> %H A338399 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A338399 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000111(n-k) * A000045(k). %F A338399 E.g.f.: (2/sqrt(5)) * exp(x/2) * sinh((sqrt(5)/2)*x) * cos(x) / (1 + sin(x)). [corrected by _Vaclav Kotesovec_, May 09 2024] %F A338399 a(n) ~ (-1)^(n+1) * sinh(sqrt(5)*Pi/4) * 2^(n + 7/2) * n^(n + 1/2) / (sqrt(5) * Pi^(n + 1/2) * exp(n + Pi/4)). - _Vaclav Kotesovec_, May 09 2024 %t A338399 nmax = 25; Round[CoefficientList[Series[2*E^(x/2)*Sinh[Sqrt[5]*x/2]*Cos[x] / (Sqrt[5]*(1 + Sin[x])), {x, 0, nmax}], x] * Range[0, nmax]!] (* _Vaclav Kotesovec_, May 09 2024 *) %o A338399 (Python) %o A338399 import sympy %o A338399 def A338399(n): %o A338399 T=[] %o A338399 for k in range(n+1): %o A338399 T.append(sympy.fibonacci(k)) %o A338399 T.reverse() %o A338399 for i in range(k): %o A338399 T[i+1]=T[i]-T[i+1] %o A338399 return T[-1] %o A338399 (Python) %o A338399 from itertools import accumulate, islice %o A338399 from operator import sub %o A338399 def A338399_gen(): # generator of terms %o A338399 blist, a, b = tuple(), 0, 1 %o A338399 while True: %o A338399 yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=a)))[-1] %o A338399 a, b = b, a+b %o A338399 A338399_list = list(islice(A338399_gen(),20)) # _Chai Wah Wu_, Jun 10 2022 %Y A338399 Cf. A000045, A000111, A000738. %K A338399 sign %O A338399 0,4 %A A338399 _Pontus von Brömssen_, Oct 24 2020