This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338401 #22 Oct 31 2020 03:47:32 %S A338401 2,10,10,206,3326,43118,150806,11591578,436494606,1008712015454, %T A338401 382034633808890,13187511533010430,2111825680430510462, %U A338401 171204772756285452656378,89579048665281690355286,1013412795315891086553473628734,20023655015717377508089133638478,24678955315461926144059519221489609194 %N A338401 a(n) is the numerator of the resistance R(n) = a(n)/A338402(n) of a triangular network of 3*n*(n+1)/2 one Ohm resistors in a hexagonal lattice arrangement. %C A338401 The resistance is measured between two corners of the triangular region. %H A338401 Hugo Pfoertner, <a href="/A338401/b338401.txt">Table of n, a(n) for n = 1..50</a> %H A338401 Hugo Pfoertner, <a href="https://oeis.org/plot2a?graph=1&name1=A338401&name2=A338402&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true&drawlines=true">Graph of R(n)</a>, bounded or unbounded for n->oo? %e A338401 R(1) = a(1)/A338402(1) = 2/3, %e A338401 R(2) = a(2)/A338402(2) = 10/9, %e A338401 R(4) = a(4)/A338402(4) = 206/123. %e A338401 a(3) = 10: The following network of A045943(3) = 18 one Ohm resistors has a resistance of R(3) = 10/7 Ohm, i.e., the current I driven by the voltage of 1 Volt is 7/10 = A338402(3)/a(3) Ampere. %e A338401 . %e A338401 O %e A338401 __/ \_ %e A338401 / / \ \ %e A338401 /1/ \1\ %e A338401 /_/ \_\ %e A338401 / _____ \ %e A338401 O---|__1__|---O %e A338401 __/ \_ __/ \_ %e A338401 / / \ \ / / \ \ %e A338401 /1/ \1\ /1/ \1\ %e A338401 /_/ \_\ /_/ \_\ %e A338401 / _____ \ / _____ \ %e A338401 O---|__1__|---O---|__1__|---O %e A338401 __/ \__ __/ \__ __/ \_ %e A338401 / / \ \ / / \ \ / / \ \ %e A338401 /1/ \1\ /1/ \1\ /1/ \1\ %e A338401 /_/ \_\ /_/ \_\ /_/ \_\ %e A338401 / _____ \ / _____ \ / _____ \ %e A338401 O---|__1__|---O---|__1__|---O---|__1__|---O %e A338401 | | %e A338401 | V = 1 Volt | %e A338401 | | | %e A338401 -------------------| |-- I=1/R Ampere --- %e A338401 | %e A338401 . %e A338401 With a numbering of the resistors as shown in the following diagram, %e A338401 . %e A338401 O %e A338401 / \ %e A338401 15 18 %e A338401 / \ %e A338401 O--14---O %e A338401 / \ / \ %e A338401 7 9 13 17 %e A338401 / \ / \ %e A338401 O-- 6---O--12---O %e A338401 / \ / \ / \ %e A338401 2 3 5 8 11 16 %e A338401 / \ / \ / \ %e A338401 O---1---O---4---O--10---O %e A338401 |______1 Volt__I=I19____| %e A338401 . %e A338401 the currents in Amperes through the 18 resistors, and the current I=I19 through the voltage source of 1 Volt, are [11/30, 1/3, 1/30, 4/15, 2/15, 1/6, 2/15, 2/15, 1/30, 11/30, 1/30, 1/6, 1/30, 1/15, 1/30, 1/3, 2/15, 1/30, 7/10]. %o A338401 (PARI) a33840_1_2(n)={my(md=3*n*(n+1)/2+1, %o A338401 T1=matrix(n,n),T2=matrix(n,n),T3=matrix(n,n), %o A338401 M=matrix(md,md,i,j,0),U=vector(md), %o A338401 valid(i,j)=i>0&&i<=n&&j>0&&j<=n&&i>=j,k=0,neq=1); %o A338401 \\ List of edges %o A338401 for(i=1,n,for(j=1,i,T1[i,j]=k++;T2[i,j]=k++;T3[i,j]=k++)); %o A338401 \\ In- and outflow of current at all nodes %o A338401 \\ lower left triangle with inflow of current from source of voltage %o A338401 M[1,1]=-1;M[1,2]=-1;M[1,md]=1; %o A338401 \\ loops over lower left corners of triangles %o A338401 for(i=2,n+1,for(j=1,i, %o A338401 \\ exclude node at top of triangle %o A338401 if(j<n+1,neq++; %o A338401 if(valid(i-1,j),M[neq,T1[i-1,j]]=1;M[neq,T3[i-1,j]]=1); %o A338401 if(valid(i-1,j-1),M[neq,T2[i-1,j-1]]=1; M[neq,T3[i-1,j-1]]=-1); %o A338401 if ( valid(i,j),M[neq,T1[i,j]]=-1;M[neq,T2[i,j]]=-1); %o A338401 \\ lower right corner with current through voltage source %o A338401 if ( i == n+1 && j == 1, M[neq,md] = -1) %o A338401 ))); %o A338401 \\ sum of voltages around triangles with vertex above base %o A338401 for( i = 1, n, for( j = 1, i, %o A338401 neq++; M[neq,T1[i,j]] = 1; M[neq,T2[i,j]] = -1; M[neq,T3[i,j]] = -1 )); %o A338401 \\ sum of voltages around triangles with vertex below base %o A338401 for( i = 1, n-1, for( j = 1, i, neq ++; %o A338401 M[neq,T3[i,j]] = 1; M[neq,T2[i+1,j]] = 1; M[neq,T1[i+1,j+1]] = -1 )); %o A338401 \\ External voltage applied to lower corners of triangle %o A338401 neq = neq++; for ( i = 1, n, M[neq,T1[i,1]] = 1); %o A338401 \\ Right side of equations; driving voltage 1 Volt %o A338401 U[neq]=1;1/matsolve(M,U~)[neq]}; %o A338401 for(n=1,10,print1(numerator(a33840_1_2(n)),", ")) %Y A338401 Cf. A000217, A045943, A048211, A174283, A338402. %K A338401 nonn,frac %O A338401 1,1 %A A338401 _Hugo Pfoertner_, Oct 24 2020