This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338409 #10 Nov 23 2020 01:45:42 %S A338409 1,2,2,2,1,1,2,2,2,2,3,3,2,2,2,3,2,3,4,3,4,3,4,4,4,4,6,6,5,6,4,4,6,7, %T A338409 7,6,7,6,5,4,6,7,8,8,8,8,10,8,8,8,9,10,8,9,11,13,11,9,12,11,10,11,11, %U A338409 11,13,11,14,14,13,15,17,15,16,16,16,14,14,14 %N A338409 a(n) is the number of nodes with depth of n in a binary tree defined as: root = 1 and a child (C) of a node (N) is such that A338215(C) = N. For nodes with two children, the smaller child is assigned as the left child and the bigger one as the right child. A child of a one-child node is assigned as the left child. %e A338409 The binary tree, read from left to right in the order of increasing depth n, is the positive integer sequence A000027. The first 67 numbers are shown in the figure below. %e A338409 1 %e A338409 (2)\_3 %e A338409 (4)\_5 %e A338409 6 \_(7) %e A338409 8 %e A338409 9 %e A338409 (10)\_11 %e A338409 12 \___________13 %e A338409 14 (15) %e A338409 16 \______17 %e A338409 (18)\_19 20 %e A338409 21 22 \_(23) %e A338409 24 25 %e A338409 (26) 27 %e A338409 28 \______29 %e A338409 30 \_(31) 32 %e A338409 33 34 %e A338409 35 36 \_____________________37 %e A338409 (38) 39 40 \_(41) %e A338409 42 \______43 44 %e A338409 45 46 \______47 (48) %e A338409 49 50 51 %e A338409 52 \_(53) 54 55 %e A338409 (56) 57 58 \_(59) %e A338409 60 \_(61) 62 63 %e A338409 64 65 66 \_67 %e A338409 All left children except 2 are composite numbers and all prime numbers are right children. %o A338409 (Python) %o A338409 from sympy import primepi %o A338409 def depth(k): %o A338409 d = 0 %o A338409 while k > 1: %o A338409 k -= primepi(k) %o A338409 k += primepi(k) %o A338409 d += 1 %o A338409 return d %o A338409 m = 1 %o A338409 for n in range (0, 101): %o A338409 a = 0 %o A338409 while depth(m + a) == n: %o A338409 a += 1 %o A338409 print(a) %o A338409 m += a %Y A338409 Cf. A000027, A062298, A095117, A338215, A338237, A338260. %K A338409 nonn %O A338409 0,2 %A A338409 _Ya-Ping Lu_, Oct 24 2020