cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338410 Primes p such that (p+2)/3 and (p+3)/2 are prime.

This page as a plain text file.
%I A338410 #14 May 20 2023 10:16:53
%S A338410 7,19,31,139,199,211,379,499,631,919,1039,1291,1399,1759,2179,2719,
%T A338410 2731,2971,3271,3691,4591,5791,5851,6079,7591,8011,8779,10039,11299,
%U A338410 11719,11731,12979,14251,15031,15511,15679,18451,18859,20071,21379,21559,22051,22639,23599,24499,24691,25339,25579
%N A338410 Primes p such that (p+2)/3 and (p+3)/2 are prime.
%C A338410 All terms == 7 (mod 12).
%H A338410 Robert Israel, <a href="/A338410/b338410.txt">Table of n, a(n) for n = 1..10000</a>
%e A338410 a(3) = 31 is in the sequence because 31, (31+2)/3 = 11 and ((31+3)/2) = 17 are prime.
%p A338410 filter:= t -> isprime(t) and isprime((t+2)/3) and isprime((t+3)/2):
%p A338410 select(filter, [seq(i,i=7..30000,12)]);
%t A338410 Select[Prime[Range[3000]],AllTrue[{(#+2)/3,(#+3)/2},PrimeQ]&] (* _Harvey P. Dale_, May 20 2023 *)
%o A338410 (PARI) isok(p) = iferr(isprime(p) && isprime((p+2)/3) && isprime((p+3)/2), E, 0); \\ _Michel Marcus_, Oct 25 2020
%Y A338410 Intersection of A091180 and A092109.
%K A338410 nonn
%O A338410 1,1
%A A338410 _J. M. Bergot_ and _Robert Israel_, Oct 25 2020