This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338421 #16 Oct 29 2020 19:24:31 %S A338421 1,4,21,16,57,44,93,36,149,132,217,176,301,268,385,208,489,452,605, %T A338421 528,737,684,869,532,1021,964,1185,1072,1365,1292,1545,1112,1745,1668, %U A338421 1957,1808,2185,2092,2413,1844,2661,2564,2921,2736,3197,3084,3473,2696,3769 %N A338421 Place four points evenly spaced on a circle, draw n evenly spaced rays from each of the points, a(n) is the number of regions thus created. See Comments for details. %C A338421 The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. %C A338421 To produce the illustrations below, all pairwise intersections between the rays are calculated and the maximum distance to the center, incremented by 20%, is taken as radius of a circle. Then all intersections between the rays and the circle defines a polygon which is used as limit. %H A338421 Lars Blomberg, <a href="/A338421/b338421.txt">Table of n, a(n) for n = 1..642</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421.png">Illustration for n=3</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_1.png">Illustration for n=7</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_2.png">Illustration for n=8</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_3.png">Illustration for n=16</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_4.png">Illustration for n=22</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_5.png">Illustration for n=26</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_6.png">Illustration for n=27</a> %H A338421 Lars Blomberg, <a href="/A338421/a338421_7.png">Illustration for n=38</a> %F A338421 Conjectured for 3 <= n <= 642. %F A338421 Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. %F A338421 +=================================+ %F A338421 | r | m | a | b | c | d | %F A338421 +---------------------------------+ %F A338421 | 2 | 4 | 3 | -4 | 4 | 2 | %F A338421 | 1 | 8 | 3 | 7 | -8 | 2 | %F A338421 | 3 | 8 | 3 | 7 | -6 | 2 | %F A338421 | 4 | 8 | 3 | -8 | 16 | 2 | %F A338421 | 5 | 8 | 3 | 7 | 4 | 2 | %F A338421 | 7 | 8 | 3 | 7 | -10 | 2 | %F A338421 | 0 | 48 | 3 | -31 | -32 | 2 | %F A338421 | 8, 40 | 48 | 3 | -31 | 128 | 2 | %F A338421 | 16, 32 | 48 | 3 | -31 | 144 | 2 | %F A338421 | 24 | 48 | 3 | -31 | 80 | 2 | %F A338421 +=================================+ %e A338421 For n=1 there are four rays that do not intersect, so a(1)=1. %o A338421 (PARI) %o A338421 a(n)={if( %o A338421 n==1,1, %o A338421 n==2,4, %o A338421 n%4==2,(3*n^2 - 4*n + 4)/2, %o A338421 n%8==1,(3*n^2 + 7*n - 8)/2, %o A338421 n%8==3,(3*n^2 + 7*n - 6)/2, %o A338421 n%8==4,(3*n^2 - 8*n + 16)/2, %o A338421 n%8==5,(3*n^2 + 7*n + 4)/2, %o A338421 n%8==7,(3*n^2 + 7*n - 10)/2, %o A338421 n%48==0,(3*n^2 - 31*n - 32)/2, %o A338421 n%48==8||n%48==40,(3*n^2 - 31*n + 128)/2, %o A338421 n%48==16||n%48==32,(3*n^2 - 31*n + 144)/2, %o A338421 n%48==24,(3*n^2 - 31*n + 80)/2, %o A338421 -1);} %o A338421 vector(642, n, a(n)) %Y A338421 Cf. A338122, A338422 (vertices), A338423 (edges). %K A338421 nonn %O A338421 1,2 %A A338421 _Lars Blomberg_, Oct 26 2020