This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338422 #15 Nov 01 2020 08:19:31 %S A338422 4,5,24,21,64,45,96,37,152,129,216,173,304,261,384,185,488,441,600, %T A338422 517,736,669,864,453,1016,945,1176,1053,1360,1269,1536,1025,1736,1641, %U A338422 1944,1781,2176,2061,2400,1717,2648,2529,2904,2701,3184,3045,3456,2465,3752 %N A338422 Place four points evenly spaced on a circle, draw n evenly spaced rays from each of the points, a(n) is the number of vertices thus created. See Comments for details. %C A338422 The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. %C A338422 See A338421 for illustrations. %H A338422 Lars Blomberg, <a href="/A338422/b338422.txt">Table of n, a(n) for n = 1..642</a> %F A338422 Conjectured for 3 <= n <= 642. %F A338422 Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. %F A338422 +==================================+ %F A338422 | r | m | a | b | c | d | %F A338422 +----------------------------------+ %F A338422 | 2 | 4 | 3 | -6 | 18 | 2 | %F A338422 | 3 | 4 | 3 | 6 | 3 | 2 | %F A338422 | 1 | 8 | 3 | 6 | 7 | 2 | %F A338422 | 4 | 8 | 3 | -10 | 34 | 2 | %F A338422 | 5 | 8 | 3 | 6 | 23 | 2 | %F A338422 | 0 | 48 | 3 | -39 | -110 | 2 | %F A338422 | 8, 40 | 48 | 3 | -39 | 194 | 2 | %F A338422 | 16, 32 | 48 | 3 | -39 | 226 | 2 | %F A338422 | 24 | 48 | 3 | -39 | 114 | 2 | %F A338422 +==================================+ %e A338422 For n=1 there are four rays that do not intersect, so a(1)=4. %o A338422 (PARI) %o A338422 a(n)={ if( %o A338422 n==1, 4, %o A338422 n==2, 5, %o A338422 n%4==2, (3*n^2 - 6*n + 18)/2, %o A338422 n%4==3, (3*n^2 + 6*n + 3)/2, %o A338422 n%8==1, (3*n^2 + 6*n + 7)/2, %o A338422 n%8==4, (3*n^2 - 10*n + 34)/2, %o A338422 n%8==5, (3*n^2 + 6*n + 23)/2, %o A338422 n%48==0, (3*n^2 - 39*n - 110)/2, %o A338422 n%48==8||n%48==40, (3*n^2 - 39*n + 194)/2, %o A338422 n%48==16||n%48==32, (3*n^2 - 39*n + 226)/2, %o A338422 n%48==24, (3*n^2 - 39*n + 114)/2, %o A338422 -1); } %o A338422 vector(642, n, a(n)) %Y A338422 Cf. A338123, A338421 (regions), A338423 (edges). %K A338422 nonn %O A338422 1,1 %A A338422 _Lars Blomberg_, Oct 26 2020