This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338423 #15 Aug 17 2025 01:25:48 %S A338423 4,8,44,36,120,88,188,72,300,260,432,348,604,528,768,392,976,892,1204, %T A338423 1044,1472,1352,1732,984,2036,1908,2360,2124,2724,2560,3080,2136,3480, %U A338423 3308,3900,3588,4360,4152,4812,3560,5308,5092,5824,5436,6380,6128,6928,5160 %N A338423 Place four points evenly spaced on a circle, draw n evenly spaced rays from each of the points, a(n) is the number of edges thus created. See Comments for details. %C A338423 The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. %C A338423 See A338421 for illustrations. %H A338423 Lars Blomberg, <a href="/A338423/b338423.txt">Table of n, a(n) for n = 1..642</a> %F A338423 Conjectured for 3 <= n <= 642. %F A338423 Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. %F A338423 +=================================+ %F A338423 | r | m | a | b | c | d | %F A338423 +---------------------------------+ %F A338423 | 2 | 4 | 3 | -5 | 10 | 1 | %F A338423 | 1 | 8 | 6 | 13 | -3 | 2 | %F A338423 | 3 | 8 | 6 | 13 | -5 | 2 | %F A338423 | 4 | 8 | 3 | -9 | 24 | 1 | %F A338423 | 5 | 8 | 6 | 13 | 25 | 2 | %F A338423 | 7 | 8 | 6 | 13 | -9 | 2 | %F A338423 | 0 | 48 | 3 | -35 | -72 | 1 | %F A338423 | 8, 40 | 48 | 3 | -35 | 160 | 1 | %F A338423 | 16, 32 | 48 | 3 | -35 | 184 | 1 | %F A338423 | 24 | 48 | 3 | -35 | 96 | 1 | %F A338423 +=================================+ %e A338423 For n=1 there are four rays that do not intersect, so a(1)=4. %o A338423 (PARI) %o A338423 a(n)={if( %o A338423 n==1,4, %o A338423 n==2,8, %o A338423 n%4==2,3*n^2 - 5*n + 10, %o A338423 n%8==1,(6*n^2 + 13*n - 3)/2, %o A338423 n%8==3,(6*n^2 + 13*n - 5)/2, %o A338423 n%8==4,3*n^2 - 9*n + 24, %o A338423 n%8==5,(6*n^2 + 13*n + 25)/2, %o A338423 n%8==7,(6*n^2 + 13*n - 9)/2, %o A338423 n%48==0,3*n^2 - 35*n - 72, %o A338423 n%48==8||n%48==40,3*n^2 - 35*n + 160, %o A338423 n%48==16||n%48==32,3*n^2 - 35*n + 184, %o A338423 n%48==24,3*n^2 - 35*n + 96, %o A338423 -1);} %o A338423 vector(642, n, a(n)) %Y A338423 Cf. A338124, A338421 (regions), A338422 (vertices). %K A338423 nonn %O A338423 1,1 %A A338423 _Lars Blomberg_, Oct 26 2020