A338425 Numbers k such that the points [prime(k), prime(k+1)], [prime(k+2), prime(k+3)] and [prime(k+4), prime(k+5)] are collinear.
3, 4, 25, 27, 41, 54, 103, 124, 140, 147, 149, 151, 186, 247, 271, 306, 345, 347, 354, 377, 398, 430, 464, 473, 504, 577, 578, 670, 682, 709, 767, 771, 787, 821, 823, 825, 827, 870, 1037, 1086, 1124, 1157, 1165, 1167, 1276, 1319, 1388, 1401, 1557, 1600, 1602, 1607, 1722, 1724, 1740, 1828, 1830
Offset: 1
Keywords
Examples
a(3)=25 is in the sequence because the six primes starting with prime(25)=97 are 97, 101, 103, 107, 109, 113, and the points (97,101), (103,107) and (109,113) are collinear, all being on the line y=x+4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A031131.
Programs
-
Maple
P:= [seq(ithprime(i), i=1..2005)]: select(n -> (P[n+2]-P[n])*(P[n+5]-P[n+1]) = (P[n+3] - P[n+1])*(P[n+4]-P[n]), [$1..2000]);
Comments