A338431 Row length of irregular triangle A337939.
1, 1, 1, 3, 3, 4, 6, 10, 8, 13, 15, 15, 21, 26, 21, 36, 36, 33, 45, 49, 42, 64, 66, 58, 72, 89, 71, 99, 105, 80, 120, 136, 105, 151, 137, 129, 171, 188, 147, 190, 210, 165, 231, 247, 184, 274, 276, 228, 288, 295
Offset: 1
Examples
n = 12: b(12) = 6 - 4 = 2 = A219839(12) > 0, hence A000217(4) = 10, R(4) = (1 + 2) + (1 + 1) = 5 from degree(S(4, x)/C(12,x) = 1*x^2) = 2 and degree(S(5, x)/C(12, x) = 2*x) = 1. Hence a(12) = 10 + 5 = 15.
Formula
a(1) = 1, and for n >= 2, a(n) = Sum_{k=1..floor(n/2)} k = A000217(floor(n/2)) if b(n) := floor(n/2) - delta(n) = A219839(n) = 0, where delta(n) = A055034(n), and if b(n) > 0, i.e., n = n(j) = A111774(j), for j >= 1, then a(n) < A000217(floor(n/2)), determined by a(n) = A000217(delta(n)) + R(n), with R(n) = Sum_{k = delta(n)+1..floor(n/2)} (1 + degree(S(k-1, x) evaluated with C(n, x) = 0)), where the C polynomial coefficients are given in A187360.