This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338463 #12 Sep 07 2023 12:47:40 %S A338463 1,0,2,2,3,4,5,8,9,12,15,20,23,28,36,44,52,62,76,90,106,124,149,176, %T A338463 203,236,279,324,372,430,499,576,657,752,867,992,1124,1280,1463,1662, %U A338463 1876,2124,2410,2722,3061,3446,3889,4374,4896,5490,6166,6900,7700,8600 %N A338463 Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2. %H A338463 G. C. Greubel, <a href="/A338463/b338463.txt">Table of n, a(n) for n = 2..1002</a> %F A338463 G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^2. %F A338463 a(n) = Sum_{k=1..n-1} A000700(k) * A000700(n-k). %F A338463 a(n) = A073252(n) - 2 * A000700(n) for n > 0. %F A338463 a(n) = [x^n]( (2/QPochhammer(-1,-x) - 1)^2 ). - _G. C. Greubel_, Sep 07 2023 %t A338463 nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] & %t A338463 With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* _G. C. Greubel_, Sep 07 2023 *) %o A338463 (Magma) %o A338463 m:=80; %o A338463 R<x>:=PowerSeriesRing(Integers(), m); %o A338463 Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // _G. C. Greubel_, Sep 07 2023 %o A338463 (SageMath) %o A338463 m=80 %o A338463 def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2 %o A338463 def A338463_list(prec): %o A338463 P.<x> = PowerSeriesRing(QQ, prec) %o A338463 return P( f(x) ).list() %o A338463 a=A338463_list(m); a[2:] # _G. C. Greubel_, Sep 07 2023 %Y A338463 Cf. A000700, A022597, A047654, A048574, A073252, A327380, A338223. %K A338463 nonn %O A338463 2,3 %A A338463 _Ilya Gutkovskiy_, Jan 31 2021