This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338467 #31 Feb 03 2021 23:38:56 %S A338467 1,3,4,7,8,13,12,19,16,25,24,29,32,35,36,41,44,49,48,57,54,61,62,67, %T A338467 70,77,76,81,82,85,88,101,94,109,98,121,102,129,110,135,118,143,122, %U A338467 155,126,161,130,175,144,181,148,187,156,191,168,199,176,207,180,215 %N A338467 a(n+1) = prime(n) + 2*n - a(n). a(1) = 1. %F A338467 a(n+1) = A078916(n) - a(n). - _Michel Marcus_, Jan 31 2021 %e A338467 a(1) + a(2) - 2*1 = 1st prime; 1 + 3 - 2*1 = 2. %e A338467 a(13) + a(14) - 2*13 = 13th prime; 32 + 35 - 2*13 = 41. %p A338467 a:= proc(n) option remember; `if`(n=1, 1, %p A338467 ithprime(n-1)-a(n-1)+2*n-2) %p A338467 end: %p A338467 seq(a(n), n=1..60); # _Alois P. Heinz_, Jan 31 2021 %t A338467 a[1] = 1; a[n_] := a[n] = Prime[n - 1] + 2*(n - 1) - a[n - 1]; Array[a, 60] (* _Amiram Eldar_, Feb 01 2021 *) %o A338467 (Python) %o A338467 from sympy import prime %o A338467 S=[1] %o A338467 nomb=100 %o A338467 for n in range(1,nomb): %o A338467 derterm=S[-1] %o A338467 terme= prime(n)-derterm+2*(len(S)) %o A338467 S.append(terme) %o A338467 print(S) %o A338467 (PARI) a(n) = if (n==1, 1, prime(n-1) + 2*(n-1) - a(n-1)); \\ _Michel Marcus_, Jan 31 2021 %Y A338467 Cf. A000040, A001223, A036467, A078916. %K A338467 nonn,easy %O A338467 1,2 %A A338467 _Carole Dubois_, Jan 31 2021