cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338469 Products of three odd prime numbers of odd index.

This page as a plain text file.
%I A338469 #18 Oct 18 2024 18:07:34
%S A338469 125,275,425,575,605,775,935,1025,1175,1265,1331,1445,1475,1675,1705,
%T A338469 1825,1955,2057,2075,2255,2425,2575,2585,2635,2645,2725,2783,3175,
%U A338469 3179,3245,3425,3485,3565,3685,3725,3751,3925,3995,4015,4175,4301,4475,4565,4715
%N A338469 Products of three odd prime numbers of odd index.
%C A338469 Also Heinz numbers of integer partitions with 3 parts, all of which are odd and > 1. These partitions are counted by A001399.
%H A338469 Robert Israel, <a href="/A338469/b338469.txt">Table of n, a(n) for n = 1..10000</a>
%e A338469 The sequence of terms together with their prime indices begins:
%e A338469      125: {3,3,3}     1825: {3,3,21}    3425: {3,3,33}
%e A338469      275: {3,3,5}     1955: {3,7,9}     3485: {3,7,13}
%e A338469      425: {3,3,7}     2057: {5,5,7}     3565: {3,9,11}
%e A338469      575: {3,3,9}     2075: {3,3,23}    3685: {3,5,19}
%e A338469      605: {3,5,5}     2255: {3,5,13}    3725: {3,3,35}
%e A338469      775: {3,3,11}    2425: {3,3,25}    3751: {5,5,11}
%e A338469      935: {3,5,7}     2575: {3,3,27}    3925: {3,3,37}
%e A338469     1025: {3,3,13}    2585: {3,5,15}    3995: {3,7,15}
%e A338469     1175: {3,3,15}    2635: {3,7,11}    4015: {3,5,21}
%e A338469     1265: {3,5,9}     2645: {3,9,9}     4175: {3,3,39}
%e A338469     1331: {5,5,5}     2725: {3,3,29}    4301: {5,7,9}
%e A338469     1445: {3,7,7}     2783: {5,5,9}     4475: {3,3,41}
%e A338469     1475: {3,3,17}    3175: {3,3,31}    4565: {3,5,23}
%e A338469     1675: {3,3,19}    3179: {5,7,7}     4715: {3,9,13}
%e A338469     1705: {3,5,11}    3245: {3,5,17}    4775: {3,3,43}
%p A338469 N:= 10000: # for terms <= N
%p A338469 P0:= [seq(ithprime(i),i=3..numtheory:-pi(floor(N/25)),2)]:
%p A338469 sort(select(`<=`,[seq(seq(seq(P0[i]*P0[j]*P0[k],k=1..j),j=1..i),i=1..nops(P0))], N)); # _Robert Israel_, Nov 12 2020
%t A338469 Select[Range[1,1000,2],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
%o A338469 (PARI) isok(m) = my(f=factor(m)); (m%2) && (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ _Michel Marcus_, Nov 10 2020
%o A338469 (Python)
%o A338469 from math import isqrt
%o A338469 from sympy import primepi, primerange, integer_nthroot
%o A338469 def A338469(n):
%o A338469     def bisection(f,kmin=0,kmax=1):
%o A338469         while f(kmax) > kmax: kmax <<= 1
%o A338469         while kmax-kmin > 1:
%o A338469             kmid = kmax+kmin>>1
%o A338469             if f(kmid) <= kmid:
%o A338469                 kmax = kmid
%o A338469             else:
%o A338469                 kmin = kmid
%o A338469         return kmax
%o A338469     def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(5,integer_nthroot(x,3)[0]+1),3)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
%o A338469     return bisection(f,n,n) # _Chai Wah Wu_, Oct 18 2024
%Y A338469 A046316 allows all primes (strict: A046389).
%Y A338469 A338471 allows all odd primes (strict: A307534).
%Y A338469 A338556 is the version for evens (strict: A338557).
%Y A338469 A000009 counts partitions into odd parts (strict: A000700).
%Y A338469 A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
%Y A338469 A005408 lists odds (strict: A056911).
%Y A338469 A008284 counts partitions by sum and length.
%Y A338469 A014311 is a ranking of 3-part compositions (strict: A337453).
%Y A338469 A014612 lists Heinz numbers of 3-part partitions (strict: A007304).
%Y A338469 A023023 counts 3-part relatively prime partitions (strict: A101271).
%Y A338469 A066207 lists numbers with all even prime indices (strict: A258117).
%Y A338469 A066208 lists numbers with all odd prime indices (strict: A258116).
%Y A338469 A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
%Y A338469 A285508 lists Heinz numbers of non-strict 3-part partitions.
%Y A338469 Cf. A001221, A001222, A002620, A005117, A037144, A056239, A112798.
%K A338469 nonn
%O A338469 1,1
%A A338469 _Gus Wiseman_, Nov 08 2020