This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338470 #20 May 09 2021 12:45:18 %S A338470 1,0,0,0,0,1,0,3,2,5,5,13,7,23,21,33,35,65,55,104,97,151,166,252,235, %T A338470 377,399,549,591,846,858,1237,1311,1749,1934,2556,2705,3659,3991,5090, %U A338470 5608,7244,7841,10086,11075,13794,15420,19195,21003,26240,29089,35483 %N A338470 Number of integer partitions of n with no part dividing all the others. %C A338470 Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others. %H A338470 Andrew Howroyd, <a href="/A338470/b338470.txt">Table of n, a(n) for n = 0..1000</a> %F A338470 a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - _Andrew Howroyd_, Mar 25 2021 %e A338470 The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot): %e A338470 (32) . (43) (53) (54) (64) (65) (75) %e A338470 (52) (332) (72) (73) (74) (543) %e A338470 (322) (432) (433) (83) (552) %e A338470 (522) (532) (92) (732) %e A338470 (3222) (3322) (443) (4332) %e A338470 (533) (5322) %e A338470 (542) (33222) %e A338470 (632) %e A338470 (722) %e A338470 (3332) %e A338470 (4322) %e A338470 (5222) %e A338470 (32222) %t A338470 Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}] %t A338470 (* Second program: *) %t A338470 a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]]; %t A338470 a /@ Range[0, 50] (* _Jean-François Alcover_, May 09 2021, after _Andrew Howroyd_ *) %o A338470 (PARI) a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ _Andrew Howroyd_, Mar 25 2021 %Y A338470 The complement is A083710 (strict: A097986). %Y A338470 The strict case is A341450. %Y A338470 The Heinz numbers of these partitions are A342193. %Y A338470 The dual version is A343341. %Y A338470 The case with maximum part not divisible by all the others is A343342. %Y A338470 The case with maximum part divisible by all the others is A343344. %Y A338470 A000005 counts divisors. %Y A338470 A000041 counts partitions. %Y A338470 A000070 counts partitions with a selected part. %Y A338470 A001787 count normal multisets with a selected position. %Y A338470 A006128 counts partitions with a selected position. %Y A338470 A015723 counts strict partitions with a selected part. %Y A338470 A167865 counts strict chains of divisors > 1 summing to n. %Y A338470 A276024 counts positive subset sums. %Y A338470 Sequences with similar formulas: A024994, A047966, A047968, A168111. %Y A338470 Cf. A001792, A064391, A064410, A066186, A067824, A083711, A098965, A264401, A339562, A339563. %K A338470 nonn %O A338470 0,8 %A A338470 _Gus Wiseman_, Mar 23 2021