This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338485 #23 Nov 04 2020 14:37:29 %S A338485 20,90,272,468,650,1332,2450,2900,3600,4160,6642,7650,10100,10388, %T A338485 14762,16400,20880,25578,27540,28730,38612,42048,50850,50960,54900, %U A338485 65792,83810,90650,98100,116948,125712,130682,141570,142400,149940,160400,194922,206100,214650 %N A338485 Primitive numbers that are the sum of the squares of two of their distinct divisors. %C A338485 If m is a term of A337988 then k^2*m is another term for any k in N*; so, there exist primitive terms m as 20, 90, 272,... in the sense that m' is not a term for any m' = m/k^2, k>1. %H A338485 Chai Wah Wu, <a href="/A338485/b338485.txt">Table of n, a(n) for n = 1..637</a> %e A338485 20 = 2^2 + 4^2 and there is no k>1 such that 20/k^2 is another term, so 20 is in the sequence. %e A338485 90 = 3^2 + 9^2 and there is no k>1 such that 90/k^2 is another term, so 90 is in the sequence. %e A338485 468 = 12^2 + 18^2 and there is no k>1 such that 468/k^2 is another term, so 468 is in the sequence. %t A338485 sumdivQ[n_] := AnyTrue[Most @ Divisors[n], (s = n - #^2) > 0 && s != n/2 && IntegerQ@Sqrt[s] && Divisible[n, Sqrt[s]] &]; s = Select[Range[200000], sumdivQ]; seq = {s[[1]]}; Do[If[! AnyTrue[s[[1 ;; k - 1]], IntegerQ@Sqrt[s[[k]]/#] &], AppendTo[seq, s[[k]]]], {k, 2, Length[s]}]; seq (* _Amiram Eldar_, Oct 31 2020 *) %o A338485 (PARI) isok(m) = {my(d=divisors(m)); for (i=2, #d, for (j=1, i-1, if (d[i]^2+d[j]^2 == m, return (1)); ); ); } \\ A337988 %o A338485 isprim(x, vp) = {for (i=1, #vp, my(y = x/vp[i]); if ((denominator(y)==1) && issquare(y), return (0));); return(1);} %o A338485 lista(nn) = {my(vp = []); for (n=1, nn, if (isok(n) && isprim(n, vp), vp = concat(vp, n));); vp;} \\ _Michel Marcus_, Oct 30 2020 %Y A338485 Subsequence of A337988. %Y A338485 A071253 is a subsequence. %K A338485 nonn %O A338485 1,1 %A A338485 _Bernard Schott_, Oct 30 2020 %E A338485 More terms from _Michel Marcus_, Oct 30 2020