This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338507 #8 Nov 02 2020 20:40:52 %S A338507 2,2,2,2,2,2,2,4,2,2,2,2,2,10,2,2,2,2,4,8,2,2,4,2,2,2,10,2,2,2,2,2,4, %T A338507 10,44,2,2,2,2,2,10,2,2,2,10,2,2,4,8,16,2,2,2,2,2,10,4,44,2,2,2,2,4,2, %U A338507 10,44,2,2,2,10,2,2,2,10,2,2,2,2,2,4,10,8,44,184 %N A338507 Irregular table T(n, k) read by rows, n > 0 and k = 1..A000005(n); T(n, k) is the number of subsets of divisors of n with least common multiple of elements equal to the k-th divisor of n. %C A338507 All terms are even (as the presence of 1 in a set does not change the least common multiple of its elements). %F A338507 Sum_{k = 1..A000005(n)} T(n, k) = 1 + A100587(n). %F A338507 T(n, A000005(n)) = A076078(n) for any n > 1. %F A338507 T(n, 1) = 2. %F A338507 T(n, k) = A338508(n, A000005(n)+1-k) for k = 2..A000005(n). %e A338507 Triangle begins: %e A338507 1: [2] %e A338507 2: [2, 2] %e A338507 3: [2, 2] %e A338507 4: [2, 2, 4] %e A338507 5: [2, 2] %e A338507 6: [2, 2, 2, 10] %e A338507 7: [2, 2] %e A338507 8: [2, 2, 4, 8] %e A338507 9: [2, 2, 4] %e A338507 10: [2, 2, 2, 10] %e A338507 11: [2, 2] %e A338507 12: [2, 2, 2, 4, 10, 44] %e A338507 13: [2, 2] %e A338507 14: [2, 2, 2, 10] %e A338507 15: [2, 2, 2, 10] %o A338507 (PARI) row(n) = { my (d=divisors(n), r=vector(#d)); for (m=0, 2^#d-1, r[setsearch(d, lcm(vecextract(d, m)))]++); r } %Y A338507 Cf. A000005, A027750, A076078, A100587, A338508 (GCD variant). %K A338507 nonn,tabf %O A338507 1,1 %A A338507 _Rémy Sigrist_, Oct 31 2020