cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A338508 Irregular table T(n, k) read by rows, n > 0 and k = 1..A000005(n); T(n, k) is the number of nonempty subsets of divisors of n with greatest common divisor of elements equal to the k-th divisor of n.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 2, 1, 2, 1, 10, 2, 2, 1, 2, 1, 8, 4, 2, 1, 4, 2, 1, 10, 2, 2, 1, 2, 1, 44, 10, 4, 2, 2, 1, 2, 1, 10, 2, 2, 1, 10, 2, 2, 1, 16, 8, 4, 2, 1, 2, 1, 44, 4, 10, 2, 2, 1, 2, 1, 44, 10, 2, 4, 2, 1, 10, 2, 2, 1, 10, 2, 2, 1, 2, 1, 184, 44, 8, 10, 4, 2, 2, 1
Offset: 1

Views

Author

Rémy Sigrist, Oct 31 2020

Keywords

Examples

			Triangle begins:
     1: [1]
     2: [2, 1]
     3: [2, 1]
     4: [4, 2, 1]
     5: [2, 1]
     6: [10, 2, 2, 1]
     7: [2, 1]
     8: [8, 4, 2, 1]
     9: [4, 2, 1]
    10: [10, 2, 2, 1]
    11: [2, 1]
    12: [44, 10, 4, 2, 2, 1]
    13: [2, 1]
    14: [10, 2, 2, 1]
    15: [10, 2, 2, 1]
		

Crossrefs

Cf. A000005, A076078, A100587, A338507 (LCM variant).

Programs

  • Mathematica
    Array[Tally[Map[GCD @@ # &, Rest[Subsets@ Divisors[#]]]][[All, -1]] &, 24] // Flatten (* Michael De Vlieger, Nov 04 2020 *)
  • PARI
    row(n) = { my (d=divisors(n), r=vector(#d)); for (m=1, 2^#d-1, r[setsearch(d, gcd(vecextract(d, m)))]++); r }

Formula

Sum_{k = 1..A000005(n)} T(n, k) = A100587(n).
T(n, 1) = A076078(n).
T(n, k) = A338507(n, A000005(n)+1-k) for k = 1..A000005(n)-1.
T(n, A000005(n)) = 1.
Showing 1-1 of 1 results.