This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338513 #9 Nov 09 2020 09:58:49 %S A338513 2,3,14,31,117,278,956,2578,8106 %N A338513 a(n) is the number of Chvátal-satisfying spurious graphical n-sequences. %H A338513 Douglas Bauer, Linda Lesniak, Aori Nevo, and Edward Schmeichel, <a href="https://doi.org/10.1080/09728600.2020.1834337">On the necessity of Chvátal’s Hamiltonian degree condition</a>, AKCE International Journal of Graphs and Combinatorics. See p. 2. %H A338513 Vacláv Chvátal, <a href="https://doi.org/10.1016/0095-8956(72)90020-2">On Hamilton’s ideals</a>, J. Combin. Theory Ser. B 12(2): 163-168 (1972). %F A338513 Conjectures from Bauer et al.: (Start) %F A338513 Lim_{n->infinity} a(n)/a(n-1) = 3. %F A338513 Lim_{n->infinity} a(n)/A338512(n) = 0. (End) %Y A338513 Cf. A000569, A004251, A338512 (non-spurious version). %K A338513 nonn,more %O A338513 5,1 %A A338513 _Stefano Spezia_, Nov 09 2020