cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338527 Number of spanning trees in the join of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.

This page as a plain text file.
%I A338527 #14 Feb 16 2025 08:34:00
%S A338527 24,13500,34420736,239148450000,3520397039081472,94458953432730437824,
%T A338527 4179422085120000000000000,283894102615246085842939590912,
%U A338527 28059580711858187192007680000000000,3870669526565955444680027453177986243584
%N A338527 Number of spanning trees in the join of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.
%C A338527 Equivalently, the graph can be described as the graph on 3*n + 2 vertices with labels 0..3*n+1 and with i and j adjacent iff  i+j> 0 mod 3.
%C A338527 These graphs are cographs.
%H A338527 H-Y. Ching, R. Florez, and A. Mukherjee, <a href="https://arxiv.org/abs/2009.02770">Families of Integral Cographs within a Triangular Arrays</a>, arXiv:2009.02770 [math.CO], 2020.
%H A338527 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>
%F A338527 a(n) = (n + 1)*(2 n + 2)^n*(2 n + 1)^(2 n - 1).
%e A338527 The adjacency matrix of the graph associated with n = 2 is: (compare A204437)
%e A338527  [0, 1, 0, 0, 0, 1, 1, 1]
%e A338527  [1, 0, 0, 0, 0, 1, 1, 1]
%e A338527  [0, 0, 0, 1, 1, 1, 1, 1]
%e A338527  [0, 0, 1, 0, 1, 1, 1, 1]
%e A338527  [0, 0, 1, 1, 0, 1, 1, 1]
%e A338527  [1, 1, 1, 1, 1, 0, 0, 0]
%e A338527  [1, 1, 1, 1, 1, 0, 0, 0]
%e A338527  [1, 1, 1, 1, 1, 0, 0, 0]
%e A338527 a(2) = 13500 because the graph has 13500 spanning trees.
%t A338527 Table[(n + 1)*(2 n + 2)^n*(2 n + 1)^(2 n - 1), {n, 1, 10}]
%Y A338527 Cf.  A338104, A338109.
%K A338527 nonn
%O A338527 1,1
%A A338527 _Rigoberto Florez_, Nov 07 2020
%E A338527 Offset changed by _Georg Fischer_, Nov 03 2023