This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338532 #70 Feb 16 2025 08:34:00 %S A338532 1,192,17745,1612127,146356224,13286470095,1206167003329, %T A338532 109497763028928,9940381426772625,902403667119137183, %U A338532 81921642989758089216,7436977302591050167695,675140651246077550931841,61290344237862763973468352,5564035123440571957929508305,505111975464406109413779799007 %N A338532 Number of spanning trees in the n X 3 king graph. %H A338532 Seiichi Manyama, <a href="/A338532/b338532.txt">Table of n, a(n) for n = 1..500</a> %H A338532 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A338532 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %F A338532 Empirical g.f.: x*(-15*x^3 - 111*x^2 + 97*x + 1) / (x^4 - 95*x^3 + 384*x^2 - 95*x + 1). - _Vaclav Kotesovec_, Dec 04 2020 %o A338532 (Python) %o A338532 # Using graphillion %o A338532 from graphillion import GraphSet %o A338532 def make_nXk_king_graph(n, k): %o A338532 grids = [] %o A338532 for i in range(1, k + 1): %o A338532 for j in range(1, n): %o A338532 grids.append((i + (j - 1) * k, i + j * k)) %o A338532 if i < k: %o A338532 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A338532 if i > 1: %o A338532 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A338532 for i in range(1, k * n, k): %o A338532 for j in range(1, k): %o A338532 grids.append((i + j - 1, i + j)) %o A338532 return grids %o A338532 def A338029(n, k): %o A338532 if n == 1 or k == 1: return 1 %o A338532 universe = make_nXk_king_graph(n, k) %o A338532 GraphSet.set_universe(universe) %o A338532 spanning_trees = GraphSet.trees(is_spanning=True) %o A338532 return spanning_trees.len() %o A338532 def A338532(n): %o A338532 return A338029(n, 3) %o A338532 print([A338532(n) for n in range(1, 20)]) %Y A338532 Column 3 of A338029. %Y A338532 Cf. A006238. %K A338532 nonn %O A338532 1,2 %A A338532 _Seiichi Manyama_, Nov 29 2020