This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338541 #10 Nov 02 2020 02:00:20 %S A338541 44100,88200,108900,132300,152100,176400,213444,217800,220500,260100, %T A338541 264600,298116,304200,308700,324900,326700,352800,396900,426888, %U A338541 435600,441000,456300,476100,485100,509796,520200,529200,544500,573300,592900,596232,608400,617400 %N A338541 Numbers having exactly four non-unitary prime factors. %C A338541 Numbers k such that A056170(k) = A001221(A057521(k)) = 4. %C A338541 Numbers divisible by the squares of exactly four distinct primes. %C A338541 The asymptotic density of this sequence is (eta_1^4 - 6*eta_1^2*eta_2 + 3*eta_2^2 + 8*eta_1*eta_3 - 6*eta_4)/(4*Pi^2) = 0.0000970457..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011). %H A338541 Amiram Eldar, <a href="/A338541/b338541.txt">Table of n, a(n) for n = 1..10000</a> %H A338541 Carl Pomerance and Andrzej Schinzel, <a href="http://mjcnt.phystech.edu/en/article.php?id=4">Multiplicative Properties of Sets of Residues</a>, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62. %e A338541 44100 = 2^2 * 3^2 * 5^2 * 7^2 is a term since it has exactly 4 prime factors, 2, 3, 5 and 7, that are non-unitary. %t A338541 Select[Range[620000], Count[FactorInteger[#][[;;,2]], _?(#1 > 1 &)] == 4 &] %Y A338541 Subsequence of A013929 and A318720. %Y A338541 Cf. A001221, A056170, A057521, A190641, A338539, A338540, A338542. %Y A338541 Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4). %K A338541 nonn %O A338541 1,1 %A A338541 _Amiram Eldar_, Nov 01 2020